1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ratelena [41]
3 years ago
6

The passing of the Moon directly between Earth and the Sun is a/an

Physics
2 answers:
erastova [34]3 years ago
8 0

it's the "solar eclipse"

vladimir1956 [14]3 years ago
6 0
<span>The correct answer for this question is that the passing of the moon directly between the earth and the sun is a solar eclipse. Solar eclipses cause the earth to temporarily become slightly darker, and can be observed by looking through specialist glasses so as not to damage the eyes.</span>
You might be interested in
Which of the following is a non renewable resource?
Karo-lina-s [1.5K]
Carbon isn’t because all the others on the list are naturally made apart from carbon which is man made because of all the pollution . X
3 0
3 years ago
If 20 beats are produced within one second, which of the following frequencies could possibly be held by two sound waves traveli
NeTakaya

Answer:

D. 22 Hz and 42 Hz

Explanation:

  • When two waves with different frequency travelling in the same medium meet each other, they produce an interference pattern called beat.
  • <em><u>The frequency of the beat produced is equivalent to </u></em><em><u>the difference between the individual frequencies of the two waves involved.</u></em>
  • <em><u>Therefore; in this case since the frequency of the beat is 20 Hz, that is from 20 beats per second.</u></em>
  • We need to find a pair from the choices whose frequency difference is 20 Hz.
  • This happens to be choice D. 22 Hz and 42 Hz,  that is 42 Hz - 22 Hz = 20 Hz
8 0
3 years ago
Read 2 more answers
50 Point Physics Question!
harina [27]

Answer:

dfsdfgsdfaefffsfffefefef

Explanation:

eg3g3gf3f3f3f3f3f3f3f3f3f3ggeg

7 0
3 years ago
Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 1.00 s, it rotates 21.0 rad. Du
ELEN [110]

With constant angular acceleration \alpha, the disk achieves an angular velocity \omega at time t according to

\omega=\alpha t

and angular displacement \theta according to

\theta=\dfrac12\alpha t^2

a. So after 1.00 s, having rotated 21.0 rad, it must have undergone an acceleration of

21.0\,\mathrm{rad}=\dfrac12\alpha(1.00\,\mathrm s)^2\implies\alpha=42.0\dfrac{\rm rad}{\mathrm s^2}

b. Under constant acceleration, the average angular velocity is equivalent to

\omega_{\rm avg}=\dfrac{\omega_f+\omega_i}2

where \omega_f and \omega_i are the final and initial angular velocities, respectively. Then

\omega_{\rm avg}=\dfrac{\left(42.0\frac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)}2=42.0\dfrac{\rm rad}{\rm s}

c. After 1.00 s, the disk has instantaneous angular velocity

\omega=\left(42.0\dfrac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)=42.0\dfrac{\rm rad}{\rm s}

d. During the next 1.00 s, the disk will start moving with the angular velocity \omega_0 equal to the one found in part (c). Ignoring the 21.0 rad it had rotated in the first 1.00 s interval, the disk will rotate by angle \theta according to

\theta=\omega_0t+\dfrac12\alpha t^2

which would be equal to

\theta=\left(42.0\dfrac{\rm rad}{\rm s}\right)(1.00\,\mathrm s)+\dfrac12\left(42.0\dfrac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)^2=63.0\,\mathrm{rad}

5 0
3 years ago
You illuminate the grating in a spectrometer at normal incidence θi=0° with a beam of light that has a wavelength of 6562.8 Å. T
monitta

Answer:

a) θ₁ = 23.14 ° , b) θ₂ = 51.81 °

Explanation:

An address network is described by the expression

     d sin θ = m λ

Where is the distance between lines, λ is the wavelength and m is the order of the spectrum

The distance between one lines, we can find used a rule of proportions

     d = 1/600

     d = 1.67 10⁻³ mm

    d = 1-67 10⁻³ m

Let's calculate the angle

    sin θ = m λ / d

    θ  = sin⁻¹ (m λ / d)

First order

    θ₁ = sin⁻¹ (1 6.5628 10⁻⁷ / 1.67 10⁻⁶)

    θ₁ = sin⁻¹ (3.93 10⁻¹)

    θ₁ = 23.14 °

Second order

     θ₂ = sin⁻¹ (2 6.5628 10⁻⁷ / 1.67 10⁻⁶)

     θ₂ = sin⁻¹ (0.786)

     θ₂ = 51.81 °

3 0
3 years ago
Other questions:
  • A 15kg beam that is 10m long is placed on a fulcrum that is 3m from the end an 80kg person sits at the end closer to the fulcrum
    7·1 answer
  • Two antennas located at points A and B are broadcasting radio waves of frequency 96.0 MHz, perfectly in phase with each other. T
    9·2 answers
  • Technician A says that a good relay should measure between 60 and 100 ohms across the coil terminals. Technician B says that OL
    14·1 answer
  • 1) A common surface feature on the terrestrial planets is
    10·1 answer
  • A 2.0 kg block, initially moving at 10.0 m/s, slides 50.0 m across a sheet of ice beforecoming to rest. What is the magnitude of
    9·1 answer
  • In a bag there are 18 pink jellybeans, 22 purple jellybeans, 10 orange jellybeans, and 20 red jellybeans what is the probability
    15·1 answer
  • What is photosynthesis ​
    15·2 answers
  • Someone please help with this
    13·1 answer
  • What are the basic ethical guidelines for psychological research?
    12·1 answer
  • What is a risk of sharing too much private information, such as a phone number or an address, online?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!