1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alisha [4.7K]
3 years ago
10

At an axial load of 22 kN, a 15-mm-thick × 40-mm-wide polyimide polymer bar elongates 4.1 mm while the bar width contracts 0.15

mm. The bar is 270-mm long. At the 22-kN load, the stress in the polymer bar is less than its proportional limit. Determine Poisson’s ratio.
Engineering
1 answer:
Alenkasestr [34]3 years ago
3 0

Answer:

The Poisson's Ratio of the bar is 0.247

Explanation:

The Poisson's ratio is got by using the formula

Lateral strain / longitudinal strain

Lateral strain = elongation / original width (since we are given the change in width as a result of compession)

Lateral strain = 0.15mm / 40 mm =0.00375

Please note that strain is a dimensionless quantity, hence it has no unit.

The Longitudinal strain is the ratio of the elongation to the original length in the longitudinal direction.

Longitudinal strain = 4.1 mm / 270 mm = 0.015185

Hence, the Poisson's ratio of the bar is 0.00375/0.015185 = 0.247

The Poisson's Ratio of the bar is 0.247

Please note also that this quantity also does not have a dimension

You might be interested in
Using the following data, determine the percentage retained, cumulative percentage retained, and percent passing for each sieve.
vekshin1

Solution :

<u>Sieve Size</u> (in)                   <u>Weight retain</u><u>(g)</u>

3                                         1.62

2                                         2.17

$1\frac{1}{2}$                                       3.62

$\frac{3}{4}$                                        2.27

$\frac{3}{8}$                                        1.38

PAN                                    0.21

Given :

Sieve       weight       % wt. retain    % cumulative       % finer

size        retained                               wt. retain

No. 4        59.5            10.225%          10.225%            89.775%

No. 8        86.5            14.865%          25.090%           74.91%

No. 16       138              23.7154%        48.8054%         51.2%

No. 30      127.8           21.91%              70.7154%          29.2850%

No. 50      97               16.6695%         87.3849%         12.62%

No. 100     66.8            11.4796%         98.92%              1.08%

Pan          <u>  6.3    </u>           1.08%              100%                   0%

                581.9 gram

Effective size = percentage finer 10% ($$D_{20})

0.149 mm, N 100, % finer 1.08

0.297, N 50 , % finer 12.62%

x  ,   10%

$y-1.08 = \frac{12.62 - 1.08}{0.297 - 0.149}(x-0.149)$

$(10-1.08) \times \frac{0.297 - 0.149}{12.62 - 1.08}+ 0.149=x$

x = 0.2634 mm

Effective size, $D_{10} = 0.2643 \ mm$

Now, N 16 (1.19 mm)  ,  51.2%

N 8 (2.38 mm)  ,  74.91%

x,  60%

$60-51.2 = \frac{74.91-51.2}{2.38-1.19}(x-1.19)$

x = 1.6317 mm

$\therefore D_{60} = 1.6317 \ mm$

Uniformity co-efficient = $\frac{D_{60}}{D_{10}}$

   $Cu= \frac{1.6317}{0.2643}$

Cu = 6.17

Now, fineness modulus = $\frac{\Sigma \text{\ cumulative retain on all sieve }}{100}$

$=\frac{\Sigma (10.225+25.09+48.8054+70.7165+87.39+98.92+100)}{100}$

= 4.41

which lies between No. 4  and No. 5 sieve [4.76 to 4.00]

So, fineness modulus = 4.38 mm

7 0
3 years ago
Evan notices a small fire in his workplace. Since the fire is small and the atmosphere is not smoky he decides to fight the fire
Norma-Jean [14]

Answer:

not calling the firemean

Explanation:

7 0
3 years ago
For the following conditions determine whether a CMFR or a PFR is more efficient in removing a reactive compound from the waste
andrew11 [14]

Answer:

The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.

Xₚբᵣ = 0.632

X꜀ₘբᵣ = 0.5

Xₚբᵣ > X꜀ₘբᵣ

Explanation:

From the reaction rate coefficient, it is evident the reaction is a first order reaction

Performance equation for a CMFR for a first order reaction is

kτ = (X)/(1 - X)

k = reaction rate constant = 0.05 /day

τ = Time constant or holding time = V/F₀

V = volume of reactor = 280 m³

F₀ = Flowrate into the reactor = 14 m³/day

X = conversion

k(V/F₀) = (X)/(1 - X)

0.05 × (280/14) = X/(1 - X)

1 = X/(1 - X)

X = 1 - X

2X = 1

X = 1/2 = 0.5

For the PFR

Performance equation for a first order reaction is given by

kτ = In [1/(1 - X)]

The parameters are the same as above,

0.05 × (280/14) = In (1/(1-X)

1 = In (1/(1-X))

e = 1/(1 - X)

2.718 = 1/(1 - X)

1 - X = 1/2.718

1 - X = 0.3679

X = 1 - 0.3679

X = 0.632

The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.

3 0
3 years ago
. In one stroke of a reciprocating compressor, helium is isothermally and reversibly compressed in a piston + cylinder from 298
andriy [413]

Answer:

5.7058kj/mole

Explanation:

Please see attachment for step by step guide

5 0
3 years ago
A college student volunteers with the elderly in a hospice program and discovers her clients complain of dry skin. She has an id
daser333 [38]

Answer:

D

Explanation: She hopes to be able to make this, however she hasn't yet...therefore she is thinking of a concept and it's development

3 0
3 years ago
Read 2 more answers
Other questions:
  • A circuit with ____ -diameter connecting wires at a _____ temperature will have the least electrical resistance.
    13·1 answer
  • The flowchart below shows the design steps required to build a working model.
    6·1 answer
  • A two-stroke CI. engine delivers 5000 kWwhile using 1000 kW to overcome friction losses. It consumes 2300 kg of fuel per hour at
    14·1 answer
  • Please help been stuck on this for a couple minutes
    5·1 answer
  • Match the use of the magnetic field to its respective description.​
    6·1 answer
  • If fog is so bad that I can’t see for short distance what should I do
    9·2 answers
  • Explain the use of a vacuum gauge.
    15·1 answer
  • In the following scenario, what could the engineers have done to keep the bridge from collapsing?
    8·1 answer
  • If a population has no predadors and plenty of available resources, how might that population change
    15·1 answer
  • when discussing valve train components, technician a says stamped rocker arms are very strong and may be used in high-horsepower
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!