1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kay [80]
3 years ago
14

One kilogram of air, initially at 5 bar, 350 K, and 3 kg of carbon dioxide (CO2), initially at 2 bar, 450 K, are confined to opp

osite sides of a rigid, well-insulated container. The partition is free to move and allows conduction from one gas to the other without energy storage in the partition itself. The air and carbon dioxide each behave as ideal gases.
Determine the final equilibrium temperature, in K, and the final pressure, in bar, assuming constant specific heats.
Engineering
1 answer:
pentagon [3]3 years ago
6 0

Answer:

Check the explanation

Explanation:

Energy alance of 2 closed systems: Heat from CO2 equals the heat that is added to air in

m_{a} c_{v,a}(T_{eq} -T_{a,i)} =m_{co2} c_{v,co2} (T_{co2,i} -T_{eq)}

1x0.723x(T_{eq} -350)=3x0.780x(450-T_{eq} ) ⇒T_{eq} = 426.4 °K

The initail volumes of the gases can be determined by the ideal gas equation of state,

V_{a,i}  = \frac{mRT_{a,i} }{P_{a,i} }=  \frac{1x (8.314 28.97 kJ kg • °K)x 350°K}{5 bar x 100KPa bar} = 0.201m^{3}

The equilibrium pressure of the gases can also be obtained by the ideal gas equation

P_{eq=\frac{(m_{a}R_{a}T_{eq})+(m_{a}R_{a}T_{eq} ) }{(V_{a,eq}+V_{CO2,eq)} } =\frac{(m_{a}R_{a}T_{eq})+(m_{a}R_{a}T_{eq} ) }{(V_{a,i}+V_{CO2,i)} }

P_{eq}= 1x(8.314 28.97)x426.4+3x(8.314 44)x426.4

                             (0.201+1.275)

= 246.67 KPa = 2.47 bar

You might be interested in
A natural-draft cooling tower receives 250,000 ft3/min of air at standard atmospheric pressure, 70oF, and 45 percent relative hu
notsponge [240]

Find the attachment for complete solution

5 0
3 years ago
Suppose the working pressure for a boiler is 10 psig, then what is the corresponding absolute pressure?
yanalaym [24]

Answer:

The corresponding absolute pressure of the boiler is 24.696 pounds per square inch.

Explanation:

From Fluid Mechanics, we remember that absolute pressure (p_{abs}), measured in pounds per square inch, is the sum of the atmospheric pressure and the working pressure (gauge pressure). That is:

p_{abs} = p_{atm}+p_{g} (1)

Where:

p_{atm} - Atmospheric pressure, measured in pounds per square inch.

p_{g} - Working pressured of the boiler (gauge pressure), measured in pounds per square inch.

If we suppose that p_{atm} = 14.696\,psi and p_{g} = 10\,psi, then the absolute pressure is:

p_{abs} = 14.696\,psi+10\,psi

p_{abs} = 24.696\,psi

The corresponding absolute pressure of the boiler is 24.696 pounds per square inch.

8 0
3 years ago
For an Otto cycle, plot the cycle efficiency as a function of compression ratio from 4 to 16.
Elza [17]

Assumptions:

  • Steady state.
  • Air as working fluid.
  • Ideal gas.
  • Reversible process.
  • Ideal Otto Cycle.

Explanation:

Otto cycle is a thermodynamic cycle widely used in automobile engines, in which an amount of gas (air) experiences changes of pressure, temperature, volume, addition of heat, and removal of heat. The cycle is composed by (following the P-V diagram):

  • Intake <em>0-1</em>: the mass of working fluid is drawn into the piston at a constant pressure.
  • Adiabatic compression <em>1-2</em>: the mass of working fluid is compressed isentropically from State 1 to State 2 through compression ratio (r).

        r =\frac{V_1}{V_2}

  • Ignition 2-3: the volume remains constant while heat is added to the mass of gas.
  • Expansion 3-4: the working fluid does work on the piston due to the high pressure within it, thus the working fluid reaches the maximum volume through the compression ratio.

         r = \frac{V_4}{V_3} = \frac{V_1}{V_2}

  • Heat Rejection 4-1: heat is removed from the working fluid as the pressure drops instantaneously.
  • Exhaust 1-0: the working fluid is vented to the atmosphere.

If the system produces enough work, the automobile and its occupants will propel. On the other hand, the efficiency of the Otto Cycle is defined as follows:

           \eta = 1-(\frac{1}{r^{\gamma - 1} } )

where:

           \gamma = \frac{C_{p} }{C_{v}} : specific heat ratio

Ideal air is the working fluid, as stated before, for which its specific heat ratio can be considered constant.

           \gamma = 1.4

Answer:

See image attached.

5 0
3 years ago
Radioactive wastes are temporarily stored in a spherical container, the center of which is buried a distance of 10 m below the e
a_sh-v [17]

Answer:

Outside temperature =88.03°C

Explanation:

Conductivity of air-soil from standard table

   K=0.60 W/m-k

To find temperature we need to balance energy

Heat generation=Heat dissipation

Now find the value

We know that for sphere

q=\dfrac{2\pi DK}{1-\dfrac{D}{4H}}(T_1-T_2)

Given that q=500 W

so

500=\dfrac{2\pi 2\times .6}{1-\dfrac{2}{4\times 10}}(T_1-25)

By solving that equation we get

T_2=88.03°C

So outside temperature =88.03°C

6 0
3 years ago
What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 3 × 10-4
Vladimir [108]

Answer:

maximum stress is 2872.28 MPa

Explanation:

given data

radius of curvature = 3 × 10^{-4} mm

crack length = 5.5 × 10^{-2} mm

tensile stress = 150 MPa

to find out

maximum stress

solution

we know that  maximum stress formula that is express as

\sigma m = 2 ( \sigma o ) \sqrt{\frac{a}{\delta t}}     ......................1

here σo is applied stress and a is half of internal crack and t is radius of curvature of tip of internal crack

so put here all value in equation 1 we get

\sigma m = 2 ( \sigma o) \sqrt{\frac{a}{\delta t}}  

\sigma m = 2(150) \sqrt{ \frac{\frac{5.5*10^{-2}}{2}}{3*10^{-4}}}  

σm = 2872.28 MPa

so maximum stress is 2872.28 MPa

8 0
3 years ago
Other questions:
  • Find the mass if the force is 18 N and the acceleration is 2 m/s2
    8·2 answers
  • Verify the below velocity distribution describes a fluid in a state of pure rotation. What is the angular Velocity? (a)-Vx = -1/
    7·1 answer
  • A kite is an airfoil that uses the wind to produce a lift. Held in place by a string, a kite can remain aloft indefinitely. The
    9·1 answer
  • Technician A says that the paper test could detect a burned valve. Technician B says that a grayish white stain on the engine co
    14·1 answer
  • a digital multimeter is set to read dc volts on the 4 volt scale the meter leads are connected to a 12 volt battery what will th
    14·2 answers
  • Give five examples of
    14·1 answer
  • Who wanna rp?????????????????????????!
    15·1 answer
  • What setting do i dry my jordan max arua 2s on in the dryer <br>will mark brainliest
    8·1 answer
  • Technician A says test lights are great for performing simple tests. Technician B says you can use a test light to check SRS cir
    6·1 answer
  • Not all projects that engineers work on will have human factors involved.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!