Answer:
The pressure reduces to 2.588 bars.
Explanation:
According to Bernoulli's theorem for ideal flow we have

Since the losses are neglected thus applying this theorm between upper and lower porion we have

Now by continuity equation we have

Applying the values in the Bernoulli's equation we get

Answer:
non-functional requirement,
Yes they can.
The application loading time is determined by testing system under various scenarios
Explanation:
non-functional requirement are requirements needed to justify application behavior.
functional requirements are requirements needed to justify what the application will do.
The loading time can be stated with some accuracy level after testing the system.
Answer:
See attachment for chart
Explanation:
The IPO chart implements he following algorithm
The expressions in bracket are typical examples
<u>Input</u>
Input Number (5, 4.2 or -1.2) --- This will be passed to the Processing module
<u>Processing</u>
Assign variable to the input number (x)
Calculate the square (x = 5 * 5)
Display the result (25) ----> This will be passed to the output module
<u>Output</u>
Display 25
Given Information:
Initial temperature of aluminum block = 26.5°C
Heat flux = 4000 w/m²
Time = 2112 seconds
Time = 30 minutes = 30*60 = 1800 seconds
Required Information:
Rise in surface temperature = ?
Answer:
Rise in surface temperature = 8.6 °C after 2112 seconds
Rise in surface temperature = 8 °C after 30 minutes
Explanation:
The surface temperature of the aluminum block is given by

Where q is the heat flux supplied to aluminum block, k is the conductivity of pure aluminum and α is the diffusivity of pure aluminum.
After t = 2112 sec:

The rise in the surface temperature is
Rise = 35.1 - 26.5 = 8.6 °C
Therefore, the surface temperature of the block will rise by 8.6 °C after 2112 seconds.
After t = 30 mins:

The rise in the surface temperature is
Rise = 34.5 - 26.5 = 8 °C
Therefore, the surface temperature of the block will rise by 8 °C after 30 minutes.
Answer:
E=52000Hp.h
E=38724920Wh
E=1.028x10^11 ftlb
Explanation:
To solve this problem you must multiply the engine power by the time factor expressed in h / year, to find this value you must perform the conventional unit conversion procedure.
Finally, when you have the result Hp h / year you convert it to Ftlb and Wh

E=52000Hp.h

E=38724920Wh

E=1.028x10^11 ftlb