Answer:
b. The weak base of an alkaline buffer will accept hydrogen protons when a strong acid is added to the solution
d.The conjugate acid of an alkaline buffer will donate hydrogen protons when a strong base is added to the solution.
Explanation:
A buffer is a solution that resist pH change, it shows minimal change upon addition of small amount of strong acid or strong base. An alkaline buffer will have a basic pH, above 7. It is made by mixing a weak base and its salt with a strong acid. An example of an alkaline buffer is carbonate-bicarbonate buffer that is prepared using varying amount of anhydrous sodium carbonate and volume of solution of sodium bicarbonate to get pH range between 9.2 to 10.7
Within the buffer,the salt is completely ionized while the weak base is partly ionized. on addition of acid, the released protons will be removed by the bicarbonate ion to form sodium carbonate; on addition of base, the hydroxide ion released by the base will be removed by the hydrogen ions to form water and the pH remains relatively the same
The role<span> of a </span>decomposer<span> is to decompose or break down dead matter in the environment. Plants make their own food by the process of photosynthesis and also produce (hence the name) food for other </span>consumers<span>. Without </span>producers<span> an </span>ecosystem<span> could not sustain itself.</span>
Answer:
c
Explanation:
How many moles of gold are equivalent to 1.204 × 1024 atoms?
0.2
0.5
2
5
C) 2 Is the correct answer, I took the test and it was correct.
The rate of disappearance of chlorine gas : 0.2 mol/dm³
<h3>Further explanation</h3>
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time.
For reaction :

The rate reaction :
![\tt -\dfrac{1}{a}\dfrac{d[-A]}{dt}= -\dfrac{1}{b}\dfrac{d[-B]}{dt}=\dfrac{1}{c}\dfrac{d[C]}{dt}=\dfrac{1}{d}\dfrac{d[D]}{dt}](https://tex.z-dn.net/?f=%5Ctt%20-%5Cdfrac%7B1%7D%7Ba%7D%5Cdfrac%7Bd%5B-A%5D%7D%7Bdt%7D%3D%20-%5Cdfrac%7B1%7D%7Bb%7D%5Cdfrac%7Bd%5B-B%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7Bc%7D%5Cdfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7Bd%7D%5Cdfrac%7Bd%5BD%5D%7D%7Bdt%7D)
Reaction for formation CCl₄ :
<em>CH₄+4Cl₂⇒CCl₄+4HCl</em>
<em />
From equation, rate of reaction = rate of formation CCl₄ = 0.05 mol/dm³
Rate of formation of CCl₄ = reaction rate x coefficient of CCCl₄
0.05 mol/dm³ = reaction rate x 1⇒reaction rate = 0.05 mol/dm³
The rate of disappearance of chlorine gas (Cl₂) :
Rate of disappearance of Cl₂ = reaction rate x coefficient of Cl₂
Rate of disappearance of Cl₂ = 0.05 x 4 = 0.2 mol/dm³