Answer:
Given, 0.29 g of hydrocarbon produces 448ml of CO2 at STP. then, C2H5 is the emperical formula of hydrocarbon . n = 2 , hence, molecular formula will be C4H10
Answer:
Carbon and Oxygen, Argon and Helium.
Explanation:
noble gases have full outer shells of electrons, and so cannot share other atoms' electrons to form bonds. sodium and chlorine form an ionic bond.
Answer:
Kb = 6.22x10⁻⁷
Explanation:
Triethanolamine, C₆H₁₅O₃N, is in equilibrium with water:
C₆H₁₅O₃N(aq) + H₂O(l) ⇄ C₆H₁₅O₃NH⁺(aq) + OH⁻(aq)
Kb is defined from concentrations in equilibrium, thus:
Kb = [C₆H₁₅O₃NH⁺] [OH⁻] / [C₆H₁₅O₃N]
The equilibrium concentration of these compounds could be written as:
[C₆H₁₅O₃N] = 0.486M - X
[C₆H₁₅O₃NH⁺] = X
[OH⁻] = X
pH is -log [H⁺], thus, [H⁺] = 10^-pH = 1.820x10⁻¹¹M
Also, Kw = [OH⁻] ₓ [H⁺];
1x10⁻¹⁴ = [OH⁻] ₓ [H⁺]
1x10⁻¹⁴ = [OH⁻] ₓ [1.820x10⁻¹¹M]
5.495x10⁻⁴M = [OH⁻], that means <em>X = 5.495x10⁻⁴M</em>
Replacing in Kb formula:
Kb = [5.495x10⁻⁴M] [5.495x10⁻⁴M] / [0.486M-5.495x10⁻⁴M]
<em>Kb = 6.22x10⁻⁷</em>
<em></em>
3.4 x10^3 best answer to the question
The central Xe atom in XeO3 has three bonding domains and one lone pair of electrons. Hence, the electron geometry is tetrahedral and molecular geometry is pyramidal.