With that informatio you can:
1) Write the chemical equation
2) Balance the chemical equation
3) State the molar ratios
4) Predict if precipitation occurs.
I will do all four, for you:
1) Chemical equation:
mercury(I) nitrate potassium bromide mercury(I) bromide potassium nitrate
<span>Hg2(NO3)2 + KBr → Hg2Br2 + KNO<span>3
2) Balanced chemical equation
</span></span>
<span>Hg2(NO3)2 + 2KBr → Hg2Br2 + 2KNO<span>3
3) Molar ratios or proportions:
1 mol </span></span><span>Hg2(NO3)2 : 2 mol KBr : 1 mol Hg2Br2 : 2 mol KNO<span>3
4) Prediction of precipitation.
You can use the solubility rules or a table of solubilities. I found in a table of solutiblities that mercury(I) bromide is insoluble and potassium bromide is soluble, Then you can predict that the precipitation of mercury(I) bromide will occur.
</span></span>
Answer:- Mass of the titanium alloy is 7.01 g, choice C is correct.
Solution:- The heat of fusion is given as 422.5 joules per gram and it also says that 2960 joules of heat is required to melt the metal completely.
The suggested equation is, 
where Q is the heat energy, m is the mass and Hf is the heat of fusion.
Since, we are asked to calculate the mass, the equation could be written as:

Let's plug in the values in it:

m = 7.01 g
So, the mass of the titanium alloy is 7.01 g, choice C is correct.
X is usually representing time so years, days, etc
Answer:
2 H2(g) + O2(g) → 2 H2O(ℓ) ΔH = −570 kJ
Explanation:
Answer:
Option B, HCO3 1-
Explanation:
The valence of Sodium ion is +1 and the valence of HCO3 is -1. Thus, sodium ion has an extra electron to be donated to complete its outer shell while HCO3 needs an electron to complete its outer shell
Hence Na will combine with HCO3 to form NaHCO3
Option B is correct