This is what I got:
Net force in the Y direction:
ΣFy = T1 - T2
F = ma
ma = T1 - T2
Isolate for T2
ma - T1 = -T2
Multiply by -1
T1 - ma = T2
100 - (3)(2) = T2
100 - 6 = T2
T2 = 94 N
Answer:
70m/s²
Explanation:
we will use the first equation of Dalton to find it
Answer: The potential difference between the plates = 0.4061V
Explanation:
Given that the
Electric field strength E = 155 N/C
Distance d = 0.00262 m
From the definition of electric field strength, is the ratio of potential difference V to the distance between the plates. That is
E = V/d
Substitute E and d into the above formula
155 = V/0.00262
Cross multiply
V = 155 × 0.00262
V = 0.4061 V
The potential difference between the plates is 0.4061 V
To calcculate the braking force of the car moving, we use Newton's second law of motion which relates the acceleration and the force of an object moving. The force of an object moving is directly proportional to its acceleration and the proportionality constant is the mass of the object. It is expressed as:
Force = ma
Acceleration is the rate of change of the velocity of a moving object. We calculate acceleration from the velocity and the time given above.
a = (10 m/s) / 5 s = 2 m/s^2
So,
Force = ma
Force = 1000 kg ( 2 m/s^2 )
Force = 2000 kg m/s^2 or 2000 N
Answer:
<em>Because </em><em>of </em><em>the </em><em>given </em><em>stranded</em><em> </em><em>wires </em><em>is </em><em>that </em><em>it's </em><em>thinner </em><em>there </em><em>are </em><em>even </em><em>more </em><em>air </em><em>gaps </em><em>and </em><em>a </em><em>greater </em><em>surface</em><em> </em><em>area </em><em>in </em><em>the </em><em>individual</em><em> </em><em>stranded</em><em> wires</em><em> </em><em>then </em><em>therefore </em><em>it </em><em>carries </em><em>less </em><em>current </em><em>than </em><em>similar </em><em>solid </em><em>wires </em><em>can </em><em>with</em><em> </em><em>each</em><em> </em><em>type </em><em>of </em><em>wire </em><em>,</em><em> insulations</em><em> </em><em>technologies </em><em>can </em><em>greatly</em><em> </em><em>assist </em><em> </em><em>in </em><em>reducing</em><em> </em><em>power </em><em>dissipation</em><em>.</em>