The Olympic sport of curling is one that is practically designed to show Physics in motion. Curling is a sport in which two teams alternate sliding smoothed stone pucks down an ice rink court with the intent to seat their stone closest to the center of the target (called the house). Each team has eight stones, meaning that the team that goes second has the (could be) massive advantage of sending the last stone.
The mass of the stone is important in that the more massive a stone (m) and the speed at which it travels (v) dictates it's momentum (momentum=mxv). As the curling stone slides down the ice (which is relatively frictionless unless acted upon by other players or objects) and having inertia, continues in it's straight course (again, unless acted upon by outside forces). If the stone hits another stone, it transfers some of its momentum in an elastic collision to that stone and the original stone is deflected in a calculable manner.
Collisions are used in the game to either clear opponent's stones from the house or out of their defensive positions, or to make adjustments to one's stones present in the house, all based on the momentum of the moving stone, and its transference.
Explanation :
The points regarding the gravitational waves are as follows :
(1) Gravitational waves are predicted to travel through space at the speed of light. So, the speed of gravitational waves is also equals
.
(2) The first direct detection of gravitational waves came in 2015. It is detected using a advanced LIGO detectors.
(3) The existence of gravitational waves is predicted by Einstein's general theory of relativity.
Hence, the correct options are (B), (D) and (E).
Answer:

Explanation:
Let the mass of bullet is m, initial velocity of bullet is vi and c be the specific heat of the bullet.
Kinetic energy, K = 1/2 mvi^2
According to the question, 50% of the kinetic energy is equal to the heat energy absorbed by the bullet.
50% of K = mass of bullet x specific heat x rise in temperature
1/4 mvi^2 = m x c x ΔT

Energy and the unit of measurement is in joules