Answer:
Following two compounds have Hydrogen Bond Interactions;
1) CH₃(CH₂)₂NH₂ (Propan-1-amine)<span>
2) </span>CH₃(CH₂)₂NH(CH₂)₄CH₃ (N-propylpentan-1-amine)
Explanation:
Hydrogen Bond Interactions are formed between those molecules which has hydrogen atoms covalently bonded to most electronegative atoms like Fluorine, Oxygen and Nitrogen. This direct attachment of Hydrogen to electronegative atom makes it partial positive resulting in hydrogen bonding with neighbor's partial negative most electronegative atom. So, in above selected compounds it can be seen that both compounds contain hydrogen atoms directly attached to Nitrogen atoms, Therefore, allowing them to form Hydrogen Bonding Interactions.
Answer: The given statement is true.
Explanation:
According to the Dalton's law, total pressure of a mixture of gases that do not react with each other is equal to the partial pressure exerted by each gas.
The relationship is as follows.

or, 
where,
....... = partial pressure of individual gases present in the mixture
Also, relation between partial pressure and mole fraction is as follows.

where,
= mole fraction
Thus, we can conclude that the statement Dalton's law of partial pressures states that the total pressure exerted by a mixture of gases is the sum of the pressures exerted independently by each gas in the mixture, is true.
Explanation:
Monitor the temperature of the water with the thermometer. Stop heating the water once it nears the boiling point of 100 degrees Celsius. Add copper(II) sulfate and stir until the heated solution is saturated. When the solution is saturated, copper(II) sulfate will not dissolve anymore
Temperature is a measurement of average kinetic energy of the particles in a sample which means that the sample with the highest temperature has the highest average kinetic energy of the particles.
That being said the answer would be 4) 10 mL of H2O (l) at 35 degrees Celsius since that sample has the largest temperature.
I hope this helps. Let me know if anything is unclear.