Answer:
Based on the Modern Periodic table, there is an increase in the electropositivity of the atom down the group as well as increases across a period. On comparing the electropositivities of the mentioned oxides central atom, it is seen that Ca is most electropositive followed by Al, Si, C, P, and S is the least electropositive.
With the decrease in the electropositivity, there is an increase in the acidity of the oxides. Thus, the increasing order of the oxides from the least acidic to the most acidic is:
CaO > Al2O3 > SiO2 > CO2 > P2O5 > SO3. Hence, CaO is the least acidic and SO3 is the most acidic.
B. Their electrons are assigned to s and p orbitals only.
Answer:
20 moles
Explanation:
4 Fe + 3O₂ → Fe₂O₃
The chemical equation provided is not yet balanced so let's start by balancing it.
4 Fe + 3O₂ → 2 Fe₂O₃
The equation is now balanced with 4 Fe atoms and 6 O atoms on both sides of the equation. It is important to ensure that the chemical equation is balanced, as only then will it tell you the relationship of the reactants and products in terms of mole.
Looking at the coefficients of Fe and Fe₂O₃, 4 moles of Fe is needed to make 2 moles of Fe₂O₃.
This can be simplified into the mole ratio below.
Fe: Fe₂O₃= 2: 1
This means that for every mole of Fe₂O₃, twice the amount of Fe (in moles) is needed.
Thus for 10 moles of Fe₂O₃,
amount of Fe needed
= 10 ×2
= 20 moles
<span>The reaction rate increases.
Why </span><span>Well a catalyst usually lower the activation barrier in an energy diagram. The lower and smaller that gap means the reaction is taking place rapidly compared to when that activation barrier gap is higher. </span>