You multiply the high length and width and if your using centimeters then divide by 500 and then there's your answer.hoped this helped.
We would have to search at least 5,000,000,000 (5 billion) stars before we would expect to hear a signal.
To find out the number of stars that we will need to search to find a signal, we need to use the following formula:
- total of stars/civilizations
- 500,000,000,000 (500 billion) stars / 100 civilization = 5,000,000,000 (5 billion)
This shows it is expected to find a civilization every 5 billion stars, and therefore it is necessary to search at least 5 billion stars before hearing a signal from any civilization.
Note: This question is incomplete; here is the complete question.
On average, how many stars would we have to search before we would expect to hear a signal? Assume there are 500 billion stars in the galaxy.
Assuming 100 civilizations existed.
Learn more about stars in: brainly.com/question/2166533
Well a Electron capture is, <span> one process that unstable atoms can use to become more stable. :) Hope this helps if ya want subscribe to my YouTube it's Enstanding tysm!</span>
Answer: - 452.088joule
Explanation:
Given the following :
Mass of water = 12g
Change in temperature(Dt) = (11 - 20)°C = - 9°C
Specific heats capacity of water(c) = 4.186j/g°C
Q = mcDt
Where Q = quantity of heat
Q = 12g × 4.186j/g°C × - 9°C
Q = - 452.088joule
Answer:
Block A has the greatest density.
Explaination:
Block A density:0.0625 kg/cm3
Block B density:0.020833 kg/cm3
Block C density:0.041667 kg/cm3