If the 30 N on the rope were pulled straight up, it would offset the force of gravity ( m g = 10 kg * 9.8 N/kg = 98 N) , leaving a net force up from the ground on the sled of 98-30 = 68 N. Since the rope is pulled at the angle of 25o, only part of the force is in the upward direction, (30N)(sin(25) = (30)(.423) = 12.7. So the net force becomes 98 N down offset by 12.7 up or 98-12.7 = 85.3 N. Ah, there it is: C.
Human hair
Yield strength (MPa)
140-160
Ultimate tensile strength (MPa)
200-250
Hope that helps.
Answer:
Wegener first thought of this idea by noticing that the different large landmasses of the Earth almost fit together like a jigsaw puzzle. The continental shelf of the Americas fits closely to Africa and Europe, and other continents showed the same trend. Wegner also analyzed both sides of the Atlantic Ocean for rock type, geological structures and fossils and noticed that there was a significant similarity between matching sides of the continents, especially in fossil plants.
Answer:
∆L=aL∆T
Explanation:
that's the answer for your Question
Answer:
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
c) True. Information is missing to perform the calculation
Explanation:
Let's consider solving this exercise before seeing the final statements.
We use Newton's second law Rotational
τ = I α
T r = I α
T gR = I α
Alf = T R / I (1)
T = α I / R
Now let's use Newton's second law in the mass that descends
W- T = m a
a = (m g -T) / m
The two accelerations need related
a = R α
α = a / R
a = (m g - α I / R) / m
R α = g - α I /m R
α (R + I / mR) = g
α = g / R (1 + I / mR²)
We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant
Let's review the claims
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
b) False. Missing data for calculation
c) True. Information is missing to perform the calculation
d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases