<h2>MARK BRAINLIEST</h2>
For this assignment, you will develop several models that show how light waves and mechanical waves are reflected, absorbed, or transmitted through various materials. For each model, you will write a brief description of the interaction between the wave and the material. You will also compose two <u><em>typewritten</em></u> paragraphs. The first will compare and contrast light waves interacting with different materials. The second will explain why materials with certain properties are well suited for particular functions.
<h2><u>Background Information</u></h2>
A wave is any disturbance that carries energy from one place to another. There are two different types of waves: mechanical and electromagnetic. A mechanical wave carries energy through matter. Energy is transferred through vibrating particles of matter. Examples of mechanical waves include ocean waves, sound waves, and seismic waves. Like a mechanical wave, an electromagnetic wave can also carry energy through matter. However, unlike a mechanical wave, an electromagnetic wave does not need particles of matter to carry energy. Examples of electromagnetic waves include microwaves, visible light, X-rays, and radiation from the Sun.
Series Circuit
A series circuit there is only one path for the electrons to flow (see image of series circuit). The main disadvantage of a series circuit is that if there is a break in the circuit the entire circuit is open and no current will flow. An example of a series would the the lights on many inexpensive Christmas trees. If one light goes out all of them will.
Parallel Circuit
In a parallel circuit the different parts of the electric circuit are on several different branches. There are several different paths that electrons can flow. If there is a break in one branch of the circuit electrons can still flow in other branches (see image of parallel circuit). Your home is wired in a parallel circuit so if one light bulb goes out the other will stay on.
HOPE THIS HELPS YOU MATE!!
I HAVE ALSO GIVEN THE EXPLANATION THINKING THAT IT MIGHT HELP YOU.
THANK YOU.
<span>An Object 4 Cm Tall Is Placed 12 Cm From A Divergi... | Chegg.com</span>
Answer:
F = 4.47 10⁻⁶ N
Explanation:
The expression they give for the strength of the tide is
F = 2 G m M a / r³
Where G has a value of 6.67 10⁻¹¹ N m² / kg² and M which is the mass of the Earth is worth 5.98 10²⁴ kg
They ask us to perform the calculation
F = 2 6.67 10⁻¹¹ 135 5.98 10²⁴ 13 / (6.79 10⁶)³
F = 4.47 10⁻⁶ N
This force is directed in the single line at the astronaut's mass centers and the space station