So, you need to have same ammount of atoms on the left and on the right side of the equation. You need to count the ammount of attoms of every substance on the left, and make sure that on the right side the ammount is same. For example in the 1st one it’s 6Sn+2P4=2Sn3P4, so that you have 6atoms of Sn on the left and 6 atoms of Sn on the right, same with the P
Answer:
atomic structure
Explanation:
Its pretty obvious. Nothing here can test atomic structure. You can test melting point, with a hot plate. You can test the ability to dissolve something with the container of water. You can test brittleness with the hammer.
Answer:
See the answer below
Explanation:
The best approach would be to <u>pour the liquid from the large reagent bottle into a small-size beaker or reagent bottle first</u>, before measuring the required quantity out into the reaction vessel. This is necessary in order to maintain safety in the laboratory.
Pouring the liquid directly from the large reagent bottle into the measuring cylinder or directly into the reaction bottle can compromise safety in the laboratory. The liquid might splash out and cause harm to the handler or create other harmful circumstances in the laboratory.
Answer:
Energy levels tell us how many <u>electrons </u>there are in an atom.
Hope this helps!
Answer:
The elements in Group 1 (lithium, sodium, potassium, rubidium, cesium, and francium) are called the alkali metals. All of the alkali metals have a single s electron in their outermost principal energy. ... For example, the electron configuration of lithium (Li), the alkali metal of Period 2, is 1s22s1.