The amount of heat needed to increase the temperature of a substance by
is given by
where
m is the mass of the substance
the specific heat capacity
the increase in temperature
In our problem, the mass of the water is m=750 g, the specific heat is
and the amount of heat supplied is
, so if we re-arrange the previous formula we find the increase in temperature of the water:
To solve this problem we will use the concepts related to Magnification. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification".
The overall magnification of microscope is
Where
N = Near point
l = distance between the object lens and eye lens
= Focal length
= Focal of eyepiece
Given that the minimum distance at which the eye is able to focus is about 25cm we have that N = 25cm
Replacing,
Therefore the correct answer is C.
<u>Answer:</u>
0.24 m
<u>Explanation:</u>
Given:
Wave velocity ( v ) = 360 m / sec
Frequency ( f ) = 1500 Hz
We have to calculate wavelength ( λ ):
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > λ = v / f
Putting values here we get:
= > λ = 360 / 1500 m
= > λ = 36 / 150 m
= > λ = 0.24 m
Hence, wavelength of sound is 0.24 m.
Answer: W = 11340J
Explanation:
Hey there! I will give the following steps, if you have any questions feel free to ask me in the comments below.
So this is the Formula: Power = Work / Time.
<u>Step 1:</u><em><u> Find the Formula</u></em>
P = W / T
<em><u>
</u></em>
<u>Step 2: </u><u><em>Make W the subject of the equation.</em></u>
W = PT
<u>Step 3:</u><u> </u><u><em>Given.</em></u>
P = 270 Watts, T = 42 seconds
<u>Step 4:</u><u><em> Substitute these values into equation 2
.</em></u>
W = 270(42)
<u>Step 5:</u><u> </u><u><em>Simplify.</em></u>
W = 11340J
The amount of work done was 11340.
~I hope I helped you! :)~