The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction. Hope this helps!
answer: D
Here is a list of the most common ways to speed up a chemical reaction
Increase the temperature (reactions that absorb energy)
Decrease the temperature (Reactions that release energy)
PV=nRT
P=nRT/V
P=[(0.650mol)(0.08206)(298K)]/(0.750L)=21.2atm
Answer:
We identify nucleic acid strand orientation on the basis of important chemical functional groups. These are the <u>phosphate</u> group attached to the 5' carbon atom of the sugar portion of a nucleotide and the <u>hydroxyl</u> group attached to the <u>3'</u> carbon atom
Explanation:
Nucleic acids are polymers formed by a phosphate group, a sugar (ribose in RNA and deoxyribose in DNA) and a nitrogenous base. In the chain, the phosphate groups are linked to the 5'-carbon and 3'-carbon of the ribose (or deoxyribose) and the nitrogenous base is linked to the 2-carbon. Based on this structure, the nucleic acid chain orientation is identified as the 5'-end (the free phosphate group linked to 5'-carbon of the sugar) and the 3'-end (the free hydroxyl group in the sugar in 3' position).
The answer should be; 11
The atomic mass number is found by combining the number of protons and neutrons
Hope this helps :)