First, 55 g of Hg is 3.65 moles because one mole of Hg has a molar mass of 200.59
Then, the mole ratio of Hg to CaO is 8:4 or 2:1. SO we divide 3.65 by 2 to get 1.82 moles of CaO
This is the same as 102.06 grams because one mole of CaO has a molar mass of 56.0774
Hope this helps!
Answer:
B - The high temperature makes the gas molecules spread apart according to Charles's law because this law describes how a gas will behave at constant pressure.
Explanation:
Charle's Law describes the relationship between temperature and volume, where increased temperature leads to increased volume. When volume is increased, that means the gas molecules are more spread apart and have more random motion. Therefore, the answer is B.
Answer:

Explanation:
The balanced equation is
2COF₂ ⇌ CO₂+CF₄; Kc = 9.00
1. Set up an ICE table

2. Solve for x
![K_{c} = \dfrac{[\rm CO][ \rm CF_{4}]}{[\rm COF_{2}]^{2}} = 9.00\\\\\begin{array}{rcl}\dfrac{x^{2}}{(2.00 - x)^{2}} & = & 9.00\\\dfrac{x}{2.00 - x} & = & 3.00\\x & = &3.00(2.00 - x)\\x & = & 6.00 - 3.00x\\4.00x & = & 6.00\\x & = & \mathbf{1.50}\\\end{array}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cdfrac%7B%5B%5Crm%20CO%5D%5B%20%5Crm%20CF_%7B4%7D%5D%7D%7B%5B%5Crm%20COF_%7B2%7D%5D%5E%7B2%7D%7D%20%3D%209.00%5C%5C%5C%5C%5Cbegin%7Barray%7D%7Brcl%7D%5Cdfrac%7Bx%5E%7B2%7D%7D%7B%282.00%20-%20x%29%5E%7B2%7D%7D%20%26%20%3D%20%26%209.00%5C%5C%5Cdfrac%7Bx%7D%7B2.00%20-%20x%7D%20%26%20%3D%20%26%203.00%5C%5Cx%20%26%20%3D%20%263.00%282.00%20-%20x%29%5C%5Cx%20%26%20%3D%20%26%206.00%20-%203.00x%5C%5C4.00x%20%26%20%3D%20%26%206.00%5C%5Cx%20%26%20%3D%20%26%20%5Cmathbf%7B1.50%7D%5C%5C%5Cend%7Barray%7D)
3. Calculate the equilibrium concentration of COF₂
c = (2.00 - x) mol·L⁻¹ = (2.00 - 1.50) mol·L⁻¹ = 0.50 mol

Check:

OK.