it has a rocky core so the gravity from that compacts the gases extremly tight
Answer:
The moment of inertia is 
Explanation:
From the question we are told that
The frequency is 
The mass of the pendulum is 
The location of the pivot from the center is 
Generally the period of the simple harmonic motion is mathematically represented as

Where I is the moment of inertia about the pivot point , so making I the subject of the formula it
=> ![I = [ \frac{T}{2 \pi } ]^2 * m* g * d](https://tex.z-dn.net/?f=I%20%3D%20%20%5B%20%5Cfrac%7BT%7D%7B2%20%5Cpi%20%7D%20%5D%5E2%20%2A%20%20m%2A%20%20g%20%2A%20d)
But the period of this simple harmonic motion can also be represented mathematically as

substituting values


So
![I = [ \frac{2.174}{2 * 3.142 } ]^2 * 2.40* 9.8 * 0.380](https://tex.z-dn.net/?f=I%20%3D%20%20%5B%20%5Cfrac%7B2.174%7D%7B2%20%2A%203.142%20%7D%20%5D%5E2%20%2A%20%20%202.40%2A%20%209.8%20%2A%200.380)

Answer:
The driver was not telling the truth because it is not possible for a car to hit another car from behind and generate a force to the sides that deflects it from its path.
Explanation:
First, we analyze the driver's statement.
The driver when arriving at the curve, is collided from behind by another car and deviates from his path and crashes into a tree. For the car to go to the tree there must be a force towards the tree.
The net force that causes the car to deviate must be formed by the sum of the motion vector of the first car plus the force that is directed towards the tree.
Here we verify that a car hitting from behind will not generate a force to the sides, but will generate a force in the same direction that the car moves, forward.
On sources it says it would just be the super giant star
A wave is characterized by the cyclic occurrences of crests and troughs. Wavelengthis defined as the distance between two consecutive troughs or two crests and the Frequency is defined as the number of cycles that pass through a point per second