Two changes would make this reaction reactant-favored
C. Increasing the temperature
D. Reducing the pressure
<h3>Further explanation</h3>
Given
Reaction
2H₂ + O₂ ⇒ 2H₂0 + energy
Required
Two changes would make this reaction reactant-favored
Solution
The formation of H₂O is an exothermic reaction (releases heat)
If the system temperature is raised, then the equilibrium reaction will reduce the temperature by shifting the reaction in the direction that requires heat (endotherms). Conversely, if the temperature is lowered, then the equilibrium shifts to a reaction that releases heat (exothermic)
While on the change in pressure, then the addition of pressure, the reaction will shift towards a smaller reaction coefficient
in the above reaction: the number of coefficients on the left is 3 (2 + 1) while the right is 2
As the temperature rises, the equilibrium will shift towards the endothermic reaction, so the reaction shifts to the left towards H₂ + O₂( reactant-favored)
And reducing the pressure, then the reaction shifts to the left H₂ + O₂( reactant-favored)⇒the number of coefficients is greater
Lets name the unknown metal as M. Cation would be M³⁺.
the molecular formula of the compound is M₂(SO₄)₃
the mass of one mole - (molar mass of M x2 + 3 x molar mass of SO₄²⁻)
= 2M + 96 x 3
= 2M + 288
In 1 mol if there's 72.07% of sulphate ,
then 72.07 % corresponds to 288 g
1 % is then - 288/72.07
100 % of the compound - 288/72.07 x 100
molar mass of the compound - 399.6 g/mol
mass of 2M - 399.6 - 288 = 111.6 g
molar mass of M - 111.6 /2 = 55.8 g/mol
the element with molar mass of 55.8 is Fe.
Unknown metal is iron(III) , Fe³⁺
Answer:
When a mixture of methane and chlorine is exposed to ultraviolet light - typically sunlight - a substitution reaction occurs and the organic product is chloromethane. CH 4 + Cl 2 → CH 3 Cl + HCl However, the reaction doesn't stop there, and all the hydrogens in the methane can in turn be replaced by chlorine atoms.
Explanation:
hope it help i try best
Answer: B. it will scatter a beam of light
Explanation: hope it is helpful........