Answer:
covalent and ionic
Explanation:
covalent is nonmetal+nonmetal
ionic is metal+nonmetal
The solubility KI is 50 g in 100 g of H₂O at 20 °C. if 110 grams of ki are added to 200 grams of H₂O <u>the </u><u>solution </u><u>will be </u><u>saturated</u><u>.</u>
<h3>What is solubility?</h3>
Solubility is a condition where the solute is fully dissolved in the solvent. When fully mixed with the solvent.
Given that 50 g of KI is added to 100 g of water at 20 °C it means 100 g of water can dissolve a maximum of 50 g of KCl.
1 g of water will dissolve an quantity of 0.5 g of KCl.
To assay for 200 g of water: 200 g of water can disintegrate a maximum of (0.5) x 200 g of KCl.
The maximum amount of KCl that will dissolve is 100 g
Actualised amount dissolved = 110 g
when Amount dissolved > Maximum solubility limit
110 g > 100 g
Thus, the solution is saturated.
To learn more about solubility, refer to the below link:
brainly.com/question/8591226
#SPJ4
When a bond is broken that should be a type of reaction. When bonds are broken sometimes heat is released.
Answer:
2.04 x 10²⁴ molecules
Explanation:
Given parameters:
Mass of Be(OH)₂ = 145.5g
To calculate the number of molecules in this mass of Be(OH)₂ we follow the following steps:
>> Calculate the number of moles first using the formula below:
Number of moles = mass/molarmass
Since we have been given the mass, let us derive the molar mass of Be(OH)₂
Atomic mass of Be = 9g
O = 16g
H = 1g
Molar Mass = 9 + 2(16 + 1)
= 9 + 34
= 43g/mol
Number of moles = 145.5/43 = 3.38mol
>>> We know that a mole is the amount of substance that contains Avogadro’s number of particles. The particles can be atoms, molecules, particles etc. Therefore we use the expression below to determine the number of molecules in 3.38mol of Be(OH)₂:
Number of
molecules= number of moles x 6.02 x 10²³
Number of molecules= 3.38 x 6.02 x 10²³
= 20.37 x 10²³ molecules
= 2.04 x 10²⁴ molecules