Given:
Dy= 20 m
Vi = 5.0 m/s horizontally
A=9.81 m/s^2
Find:
Horizontal displacement
Solution:
D=ViT+(1/2)AT^2
Dy=(1/2)AT^2
T^2=Dy/(1/2)A
T=sqrt(Dy/(1/2)A)
T=sqrt(20/4.905)
T=2.0s
Dx=ViT
Dx=(5.0)(2.0)
Dx=10. meters
Your weight on the moon given the data from the question is 110.5 N
<h3>Definition of mass and weight </h3>
Mass is simply defined as the quantity of matter present in an object. The mass of an object is constant irrespective of the location of the object.
Weight is simply defined as the gravitational pull on an object. The weight of an object varies from place to place due to gravity.
<h3>Relationship between mass and weight </h3>
Mass and weight are related according to the following equation
Weight (W) = mass (m) × Acceleration due to gravity (g)
<h3>How to determine the weight on the moon</h3>
- Mass (m) = 65 Kg
- Acceleration due to gravity on the moon (g) = 1.7 m/s²
- Weight (W) =?
W = mg
W = 65 × 1.7
W = 110.5 N
Learn more about mass and weight:
brainly.com/question/14684564
#SPJ1
Efficiency = (Wanted) energy out ÷ energy in × 100
Energy in = 400J
Wanted Energy out = 240J
Energy cannot be used up, only transferred, so the remaining energy is most likely to be transferred into unwanted energy (loss of energy) such as heat energy.
Efficiency = 240 ÷ 400 × 100
Efficiency = 0.6 × 100
Efficiency = 60%
Answer:
8.37×10⁻⁴ N/C
Explanation:
Electric Field: This is the ratio of electrostatic force to electric charge. The S.I unit of electric field is N/C.
From the question, the expression for electric field is given as,
E = F/Q.......................... Equation 1
Where E = Electric Field, F = force experienced by the charged balloon, Q = Charge on the balloon.
Given: F = 8.2×10⁻² Newton, Q = 9.8×10 Coulombs = 98 Coulombs
Substitute these values into equation 1
E = 8.2×10⁻² /98
E = 8.37×10⁻⁴ N/C
Hence the Electric Field of the charged balloon = 8.37×10⁻⁴ N/C