Answer:
5 g
Explanation:
The heat required to vaporize ice is the sum of
i) Heat required to melt ice at 0°C
ii) Heat required to raise the temperature from 0°C to 100°C
iii) Heat required to vaporize water at 100°C
Thus;
H = nLfus + ncθ + nLvap
H= n(Lfus + cθ + Lvap)
Lfus = 6.01 kJ/mol
Lvap = 41 kJ/mol
c = 75.38
n =?
2100 = n(6.01 + 75.38(100) + 41)
n = 2100 KJ/7585.01 kJ/mol
n = 0.277 moles
Mass of water = number of moles * molar mass
Mass of water = 0.277 moles * 18 g/mol
Mass of water = 5 g
Plastic building blocks are good for building molecules because of some useful properties which they possess. For instance, plastic are flexible, they can be easily manipulated and can be made into any shape, size and combination. They can also be produced using different colors. Because of these features, they can be used to build and to explain how molecules behave.
Answer:
Tetrahedral
Explanation:
For the repulsion of the free electron pair theory, the shape of a molecule will be to repel the bonds and the free electrons on the central atom. In a molecule of carbon tetrachloride, the central atom (C) has no free electrons, so, the shape that repels better the charge is tetrahedral, as shown below.
Answer:
1.7 × 10 ^42
Explanation:
Using Nernst equation
E°cell = RT/nF Inq
at equilibrium
Q=K
E°cell = 0.0257 /n Ink= 0.0592/n log K
Fe2+(aq)+2e−→Fe(s) E∘= −0.45 V
Ag+aq)+e−→Ag(s) E∘= 0.80 V
Fe(s)+2Ag+(aq)→Fe2+(aq)+2Ag(s)
balance the reaction
Fe → Fe²⁺ + 2e⁻ reversing for oxidation E° = 0.45 v
2 Ag⁺ +2e⁻ → 2Ag
n = 2 moles and K = equilibrium constant
E° cell = 0.80 + 0.45 = 1.25 V
E° cell = (0.0592 / n) log K
substitute the value into the equations and solve for K
(1.25 × 2) / 0.0592 = log K
42.23 = log K
k = 10^ 42.23
K = 1.7 × 10 ^42