Not enough information is given to answer this question.
Explanation:
20 joule is your answer
Answer:
here
mass m =100kg
distance d=50m
acceleration due to gravity a =10m/s²
work =force×displacement
= ma/d=100×10/50=20joule
Answer:
Explanation:
We shall apply concept of Doppler's effect of apparent frequency to this problem . Here observer is moving sometimes towards and sometimes away from the source . When observer moves towards the source , apparent frequency is more than real frequency and when the observer moves away from the source , apparent frequency is less than real frequency . The apparent frequency depends upon velocity of observer . The formula for apparent frequency when observer is going away is as follows .
f = f₀ ( V - v₀ ) / V , f is apparent , f₀ is real frequency , V is velocity of sound and v is velocity of observer .
f will be lowest when v₀ is highest .
velocity of observer is highest when he is at the equilibrium position or at middle point .
So apparent frequency is lowest when observer is at the middle point and going away from the source while swinging to and from before the source of sound .

- P is power
- R is resistance

Hence


- Therefore if power is low then resistance will be high.
The first bulb has less power hence it has greater filament resistance.
A gyre is a set of currents that form b. a loop. The circulation of gyres are affected by global wind patterns, landmasses, and the planet's rotation. The circulation is also affected by temperature, as warm water goes up and cold water sinks. There are five major gyres in the world: <span>North Atlantic, South Atlantic, Indian, North Pacific, and South Pacific.</span>