Answer:
The nuclear fuel used in a nuclear reactor needs to have a higher concentration of the U 235 isotope than that which exists in natural uranium ore. U235 when concentrated (or "enriched") is fissionable in light-water reactors (the most common reactor design in the USA).
Explanation:
Answer:
Heat required to melt 26.0 g of ice at its melting point is 8.66 kJ.
Explanation:
Number of moles of water in 26 g of water: 26×
moles
=1.44 moles
The enthalpy change for melting ice is called the entlaphy of fusion. Its value is 6.02 kj/mol.
we have relation as:
q = n × ΔH
where:
q = heat
n = moles
Δ
H = enthalpy
So calculating we get,
q= 1.44*6.02 kJ
q= 8.66 kJ
We require 8.66 kJ of energy to melt 26g of ice.
Answer:
V = 65.81 L
Explanation:
En este caso, debemos usar la expresión para los gases ideales, la cual es la siguiente:
PV = nRT (1)
Donde:
P: Presion (atm)
V: Volumen (L)
n: moles
R: constante de gases (0.082 L atm / mol K)
T: Temperatura (K)
De ahí, despejando el volumen tenemos:
V = nRT / P (2)
Sin embargo como estamos hablando de condiciones normales de temperatura y presión, significa que estamos trabajando a 0° C (o 273 K) y 1 atm de presión. Lo que debemos hacer primero, es calcular los moles que hay en 50 g de amoníaco, usando su masa molar de 17 g/mol:
n = 50 / 17 = 2.94 moles
Con estos moles, reemplazamos en la expresión (2) y calculamos el volumen:
V = 2.94 * 0.082 * 273 / 1
<h2>
V = 65.81 L</h2>
Answer:it’s abc it’s just science you know
Explanation:
Answer:
ρ = 1.08 g/cm³
Explanation:
Step 1: Given data
Mass of the substance (m): 21.112 g
Volume of the substance (V): 19.5 cm³
Step 2: Calculate the density of the substance
The density (ρ) of a substance is equal to its mass divided by its volume.
ρ = m / V
ρ = 21.112 g / 19.5 cm³
ρ = 1.08 g/cm³
The density of the substance is 1.08 g/cm³.