<em><u>One</u></em><em><u> </u></em><em><u>newton</u></em><em><u> </u></em><em><u>force</u></em><em> </em><em>is</em><em> </em><em>defined as t</em><em>h</em><em>e</em><em> </em><em>force</em><em> </em><em>that</em><em> </em><em>is</em><em> necessary to provide a mass of one kilogram with an acceleration of one metre per second per second. One newton is equal to a force of 100,000 dynes in the centimetre-gram-second (CGS) system, or a force of about 0.2248 pound </em><em>i</em><em>n</em><em> </em><em>the</em><em> </em><em>f</em><em>o</em><em>o</em><em>t</em><em>-</em><em>p</em><em>o</em><em>u</em><em>n</em><em>d</em><em>-</em><em> </em><em>s</em><em>e</em><em>c</em><em>o</em><em>n</em><em>d</em><em> </em><em>system</em><em>.</em>
Answer:
The magnitude of gravitational force between two masses is
.
Explanation:
Given that,
Mass of first lead ball, 
Mass of the other lead ball, 
The center of a large ball is separated by 0.057 m from the center of a small ball, r = 0.057 m
We need to find the magnitude of the gravitational force between the masses. It is given by the formula of the gravitational force. It is given by :

So, the magnitude of gravitational force between two masses is
. Hence, this is the required solution.
Could be easy for some people and hard for some people.