Answer:

Explanation:
Let's use the equation that relate the temperatures and volumes of an adiabatic process in a ideal gas.
.
Now, let's use the ideal gas equation to the initial and the final state:

Let's recall that the term nR is a constant. That is why we can match these equations.
We can find a relation between the volumes of the initial and the final state.

Combining this equation with the first equation we have:


Now, we just need to solve this equation for T₂.

Let's assume the initial temperature and pressure as 25 °C = 298 K and 1 atm = 1.01 * 10⁵ Pa, in a normal conditions.
Here,
Finally, T2 will be:

Answer:

Explanation:
Given that,
Emf, V = 22 mV
Number of turns in the coil us 519
Rate of change of current is 10 A/s.
We need to find the magnetic flux through each turn of the coil at an instant when the current is 3.70 A.
Let's find the inductance first. So,

We have,
,
is magnetic flux

So, the magnetic flux is
.
The formula is=1/2(m x v^2)
so = 1/2*(0.05)*(310)^2
ans is =2402.5 joules