Answer: The correct option is B.
Explanation: To describe the motion of an object, we use the equations of motion.
From the above equations, we require position, speed and direction through which we an calculate the displacement, velocity and acceleration.
To calculate the complete motion of an object, we require all the three factors.
Hence, the correct option is B.
Answer: 1. Vinegar, used in the kitchen, is a liquid containing 3-6% acetic acid. It is used in pickles and in many food preparations.
2. Lemon and orange juice contains citric acid. Citric acid is used in the preparation of effervescent salts and as a food preservative.
3. Acids have been put to many uses in industry. Nitric acid and sulphuric acid are used in the manufacture of fertilizers, dyes, paints, drugs and explosives.
4. Sulphuric acid is used in batteries, which are used in cars, etc. Tannic acid is used in the manufacture of ink and leather.
5. Hydrochloric acid is used to make aqua regia, which is used to dissolve noble metals such as gold and platinum.
6. Sulphuric acid is used in manufacturing fertilizers such as super phosphate, ammonium sulpahte etc.
The molarity of aqueous lithium bromide, LiBr solution is 0.2 M
We'll begin by calculating the number of mole of Pb(NO₃)₂ in the solution.
- Volume = 10 mL = 10 / 1000 = 0.01 L
- Molarity of Pb(NO₃)₂ = 0.250 M
- Mole of Pb(NO₃)₂ =?
Mole = Molarity x Volume
Mole of Pb(NO₃)₂ = 0.25 × 0.01
Mole of Pb(NO₃)₂ = 0.0025 mole
Next, we shall determine the mole of LiBr required to react with 0.0025 mole of Pb(NO₃)₂
Pb(NO₃)₂ + 2LiBr —> PbBr₂ + 2LiNO₃
From the balanced equation above,
1 mole of Pb(NO₃)₂ reacted with 2 mole of LiBr.
Therefore,
0.0025 mole of Pb(NO₃)₂ will react with = 2 × 0.0025 = 0.005 mole of LiBr
Finally, we shall determine the molarity of the LiBr solution
- Mole = 0.005 mole
- Volume = 25 mL = 25 / 1000 = 0.025 L
- Molarity of LiBr =?
Molarity = mole / Volume
Molarity of LiBr = 0.005 / 0.025
Molarity of LiBr = 0.2 M
Learn more about molarity: brainly.com/question/10103895
Heat required in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC (T2-T1)
Heat = 10.0 g (4.18 J/g-C ) ( 6.0 C )
<span>Heat = 250.8 J</span></span>
they all have one thing in common and that its all made up of atoms. When these components are active it creates energy