The red colour is the limiting reactant.
Red-blue colour ball and two white balls attached together are reactants.
Red-blue colour ball and two white and one red colour ball attached to each other are products.
<h3>What is a limiting reagent?</h3>
The reactant that is entirely used up in a reaction is called a limiting reagent.
A reactant is a substance that is present at the start of a chemical reaction. The substance(s) to the right of the arrow are called products.
A product is a substance that is present at the end of a chemical reaction.
Hence,
The red colour is the limiting reactant.
Red-blue colour ball and two white balls attached together are reactants.
Red-blue colour ball and two white and one red colour ball attached to each other are products.
Learn more about limiting reagents here:
brainly.com/question/26905271
#SPJ1
Answer:
Explanation has been given below.
Explanation:
- Chloroform has three polar C-Cl bonds. Methylene chloride has two polar C-Cl bonds. So it is expected that chloroform should be more polar and posses higher dipole moment than methylene chloride.
- Two factors are liable for the opposite trend observed in dipole moments of methylene chloride and chloroform.
- First one is the number of hyperconjugative hydrogen atoms present in a molecule. Hyperconjugation occurs with vacant d-orbital of Cl atom. Hyperconjugation amplifies charge separation in a molecule resulting higher dipole moment.
- Methylene chloride has two hyperconjugative hydrogen atoms and chloroform has one hyperconjugative hydrogen atom.Therefore methylene chloride should have higher charge separation as compared to chloroform.
- Second one is induction of opposite polarity in a C-Cl bond by another C-Cl bond in a molecule. Higher the opposite induction of polarity, lower the charge separation in a molecule and hence lower the dipole moment of a molecule.
- Chloroform has three C-Cl bonds and methylene chloride has two C-Cl bonds. Therefore opposite induction is higher for chloroform resulting it's lower dipole moment.
Mass box C is 10+5. (So C is 15)
But if C was 30, how many times could you put B (5) into it?
30/5 = 6
You would need 6 boxes of B to make 30 grams of C.
- formula for density is mass divided by volume
therefore density of butter = 10.0g divided by 11.6ml = 0.8620689 g/cm³ ≈ 0.862 g/cm³ (3sf)