Answer:
+1/3
Explanation:
The lens equation states that:

where
f is the focal length
p is the distance of the object from the lens
q is the distance of the image from the lens
For a diverging lens, the focal length is negative: 
and we also know that the object is placed a distance of twice the focal length, so 
So we can find q from the equation above

And the magnification of the image is given by

Answer:
a) Andrea's initial momentum, 200 kg m/s
b) Andrea's final momentum, 0
c) Impulse, = - 200 Ns
d) The force that the seat belt exerts on Andrea, - 400 N
Explanation:
Given data,
The initial velocity of the car is, u = 40 m/s
The mass of Andrea, m = 50 kg
The time period of deceleration, a = 0.5 s
The final velocity of the car, v = 0
a) Andrea's initial momentum,
p = mu
= 50 x 40
= 200 kg m/s
b) Andrea's final momentum
P = mv
= 50 x 0
= 0 kg m/s
c) Impulse
I = mv - mu
= 0 - 200
= - 200 Ns
The negative sign indicated that the momentum is decreased.
d) The force that the seat belt exerts on Andrea
F = (mv - mu)t
= (0 - 200) / 0.5
= - 400 Ns
Hence,the force that the seat belt exerts on Andrea is, - 400 N
Answer:
(a) the fundamental frequency of this string is 65 Hz
(b) the harmonics of the given frequencies are third and fourth respectively.
(c) the length of the string is 2.74 m
Explanation:
Given;
mass density of the string, μ = 3 x 10⁻³ kg/m
tension of the string, T = 380 N
resonating frequencies, 195 Hz and 260 N
For the given resonant frequencies;

(c) From any of the equations, solve for Length of the string (L);

(a) the fundamental frequency is calculated as;

(b) harmonics of the given frequencies;
the first harmonic (n = 1) = f₀ = 65 Hz
the second harmonic (n = 2) = 2f₀ = 130 Hz
the third harmonic (n = 3) = 3f₀ = 195 Hz
the fourth harmonic (n = 4) = 4f₀ = 260 Hz
Thus, the harmonics of the given frequencies are third and fourth respectively.
Answer:
ask in the English then I can help you
Explanation:
please mark me as brain list