Answer:
energy required=qnet=87.75kJ
Explanation:
we will do it in three seperate step and then add up those value.
first step is to heat the sample of water upto 100C i.e upto boiling pont. because just after this sample of water started vaporization.
q 1= m c (T2-T1)
q1 = 36.0 g (4.18 J/gC) (100 - 65 C)
q1 = 5267 J
=5.267kJ
next is to vaporize the sample at 100C
q2 = 36.0 g / 18.0 g/mol X 40.7 kJ/mol
q2= 81.4 kJ
Finally, heat the steam upto 115C
q3 = m c (T2-T1)
q 3= 36.0 g (2.01 J/gC)(115-100C)
q3 = 1085 J
=1.085kJ
qnet=q1 +q2 +q3
energy required=qnet=87.75kJ
Answer:
the ionic radius of the anion 
Explanation:
From the diagram shown below :
The anion
is located at the corners
The cation
is located at the body center
The Body diagonal length = 
∴ 
Given that :
(i.e the ratio of the ionic radius of the cation to the ionic radius of
the anion )

Also ; a = 664 pm
Then :

Therefore, the ionic radius of the anion 
Answer:
[Cl-18]⁻ & [Cl-20]⁻
Explanation:
By definition isotopes are elements with the same number of protons by different number of neutrons. Elements X-18 & X-20 have 17 protons and represent Chlorine isotopes Cl-18 & Cl-20 each with 17 protons and 18 electrons to give the isotopes a -1 oxidation state. Both isotope of chlorine have 7 electron in its valence shell and 10 electrons in its core structure. Gaining 1 electron fills the valence octet and establishes a -1 oxidation state.
well when there is more kinetic energy in a solution the higher its temperature is going to be so the more the molecules are able to be help together, the lower the temperature the more difficult it would be to break the molecule apart in order to bond with it.