Answer:
Bonds basically differs with each other due to sharing of electrons .
Explanation:
There are majorly three kinds of bonds
1. Ionic bonds which forms due to an element donate an electron to another element completely .
2. covalent bonds which forms with the mutual sharing of electrons b/w two atoms .
3. metallic bonds which forms b/w metals & they share electrons due to electron negativity difference b/w two atoms or elements
The solution would be like this for this specific problem:
<span>Given:
H2 = </span><span>2.6 atm
CL2 = 3.14 atm</span>
<span>
pressure H2 = 2.6 - x
pressure Cl2 = 3.14 - x
<span>pressure HBr = 2x = 1.13
x = 1.13 / 2 = 0.565
<span>pressure H2 = 2.6 - 0.565 = 2.035
pressure Br2 = 3.14 - 0.565 = 2.575
Kp = (1.13)^2 / 2.035 x 2.575</span></span></span>
= 1.2769 / (5.240125)
= 0.24367739319195629875241525726963
= 0.244
<span>Therefore, the Kp for the reaction at the given temperature
is 0.244.
To add, </span>the hypothetical pressure of a gas if
it alone occupied the whole volume of the original mixture at the same
temperature is called the partial pressure or Kp.
we are given the the two reactants: AgNO3 and Na2CO3 and is asked to write a balanced equation and a net ionic equation for the reaction of the two. This is a double-replacement reaction:
2AgNO3 (aq)+ Na2CO3 (aq)= Ag2CO3 + 2NaNo3 (aq)
2 Ag + + 2 N03- + 2Na+ + CO32- = Ag2CO3 + 2 Na+ 2NO3-
cancelling the spectator ions, 2Ag + + CO32- = Ag2CO3
Answer:
100.8 °C
Explanation:
The Clausius-clapeyron equation is:
-Δ
Where 'ΔHvap' is the enthalpy of vaporization; 'R' is the molar gas constant (8.314 j/mol); 'T1' is the temperature at the pressure 'P1' and 'T2' is the temperature at the pressure 'P2'
Isolating for T2 gives:

(sorry for 'deltaHvap' I can not input symbols into equations)
thus T2=100.8 °C