Answer:
The shear plane angle and shear strain are 28.21° and 2.155 respectively.
Explanation:
(a)
Orthogonal cutting is the cutting process in which cutting direction or cutting velocity is perpendicular to the cutting edge of the part surface.
Given:
Rake angle is 12°.
Chip thickness before cut is 0.32 mm.
Chip thickness is 0.65 mm.
Calculation:
Step1
Chip reduction ratio is calculated as follows:


r = 0.4923
Step2
Shear angle is calculated as follows:

Here,
is shear plane angle, r is chip reduction ratio and
is rake angle.
Substitute all the values in the above equation as follows:




Thus, the shear plane angle is 28.21°.
(b)
Step3
Shears train is calculated as follows:


.
Thus, the shear strain rate is 2.155.
Answer:
a) 0.3
b) 3.6 mm
Explanation:
Given
Length of the pads, l = 200 mm = 0.2 m
Width of the pads, b = 150 mm = 0.15 m
Thickness of the pads, t = 12 mm = 0.012 m
Force on the rubber, P = 15 kN
Shear modulus on the rubber, G = 830 GPa
The average shear strain can be gotten by
τ(average) = (P/2) / bl
τ(average) = (15/2) / (0.15 * 0.2)
τ(average) = 7.5 / 0.03
τ(average) = 250 kPa
γ(average) = τ(average) / G
γ(average) = 250 kPa / 830 kPa
γ(average) = 0.3
horizontal displacement,
δ = γ(average) * t
δ = 0.3 * 12
δ = 3.6 mm
Answer:
Explanation:
Using the kinematics equation
to determine the velocity of car B.
where;
initial velocity
= constant deceleration
Assuming the constant deceleration is = -12 ft/s^2
Also, the kinematic equation that relates to the distance with the time is:

Then:

The distance traveled by car B in the given time (t) is expressed as:

For car A, the needed time (t) to come to rest is:

Also, the distance traveled by car A in the given time (t) is expressed as:

Relating both velocities:





t = 2.25 s
At t = 2.25s, the required minimum distance can be estimated by equating both distances traveled by both cars
i.e.



d + 104.625 = 114.75
d = 114.75 - 104.625
d = 10.125 ft
Answer:
Bore = 7 cm
stroke = 6.36 cm
compression ratio = 10.007
Explanation:
Given data:
Cubic capacity of the engine, V = 245 cc
Clearance volume, v = 27.2 cc
over square-ratio = 1.1
thus,
D/L = 1.1
where,
D is the bore
L is the stroke
Now,
V = 
or
V = 
on substituting the values, we have
245 = 
or
D = 7.00 cm
Now,
we have
D/L = 1.1
thus,
L = D/1.1
L = 7/1.1
or
L= 6.36 cm
Now,
the compression ratio is given as:

on substituting the values, we get

or
Compression ratio = 10.007