1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madreJ [45]
4 years ago
8

Carbon dioxide flows at a rate of 1.5 ft3 /s from a 3-in. pipe in which the pressure and temperature are 20 psi (gage) and 120 °

F into a 1.5-in. pipe. If viscous effects are neglected and incompressible conditions are assumed, determine the pressure in the smaller pipe
Engineering
1 answer:
Monica [59]4 years ago
7 0

Answer:

the absolute pressure in the smaller pipe = 19.63 psi

Explanation:

Let A be the diameter of the first pipe = 3 inches

Let B be the diameter of the second pipe.  = 1.5 inches

To feet (ft) ; we have

Diameter of the pipe A D_1 = (\dfrac{3}{12})ft = 0.25  \ ft

Diameter of pipe B  D_1 = (\dfrac{1.5}{12})ft = 0.125  \ ft

Temperature T = 120° F = (120+ 460)°R

= 580 ° R

The pressure gage to atmospheric pressure ; we have:

P_{Absolute }=P _{Atm} + P_{guage}

where;

atmospheric pressure = 1.47 psi

pressure gage = 20 psi

P_{Absolute }=(1.47+20)psi

P_{Absolute }=34.7 \ psi

To lb/ft²; we have:

P_{Absolute }=(34.7 *144 ) lb/ft^2

P_{Absolute }= 4.998.6 fb/ft²

The density of carbon dioxide can be calculated by using the relation

\rho = \dfrac{P}{RT}

\rho = \dfrac{4996.8}{(1130 \ lb /slug ^0 R)*(580{^0} R)}

\rho = 7.64*10^{-3}\ slug /ft^3

Formula for calculating cross sectional area is

A = \dfrac{\pi}{4}D

For diameter of pipe D_1 = 0.025

A₁ = \dfrac{\pi}{4}*0.25^2

A₁ = 0.04909 ft²

For diameter of pipe D_2 - 0.0125

A₂ =\dfrac{\pi}{4}*0.125^2

A₂ = 0.012227 ft²

Using the continuity equation to determine the velocities V₁ and V₂ respectively.

For V₁

Q = A₁V₁

V₁ = Q₁/ A₁

V₁ = 1.5/0.04909

V₁ = 30.557 ft/s

For V₂

Q = A₂V₂

V₂= Q₂/ A₂

V₂ = 1.5/0.04909

V₂ = 30.557 ft/s

Finally; using Bernoulli's Equation to the flow of the carbon dioxide from the larger pipe to the smaller pipe ; we have:

p_1 + \dfrac{\rho V_1^2}{2}+\gamma Z_1= p_2 + \dfrac{\rho V_2^2}{2}+\gamma Z_2

Since the pipe is horizontal then;

\gamma Z_1= \gamma Z_2

So;

p_1 + \dfrac{\rho V_1^2}{2}= p_2 + \dfrac{\rho V_2^2}{2}

p_2 =p_1 +\dfrac{1}{2}  \rho(V_1^2-V_2^2)

p_2 =4996.8+\dfrac{1}{2}  *7.624*10^{-3}(30.557^2-122.23^2)

p_2 =4943.41 \ lb/ft^2

To psi;

p_2 =\dfrac{4943.41 }{144}psi

p_2 =34.33 \ psi gage

The absolute pressure in the smaller pipe can be calculated as:

p_2 _{absolute} = 34.33 - 14.7

p_2 _{absolute} = 19.63 \ \  absolute

Hence, the absolute pressure in the smaller pipe = 19.63 psi

You might be interested in
Whats the purpose of the keyway
Nata [24]

Answer:

abrir candados y abrir puertas

Explanation:

4 0
2 years ago
3. When performing overhead work on scaffolding, what protective measures must be taken to prevent objects
hjlf

Answer:

Toeboards, debris nets, or canopies

Explanation:

7 0
3 years ago
A heat pump designer claims to have an air-source heat pump whose coefficient of performance is 1.8 when heating a building whos
Anit [1.1K]

Answer:

The claim is valid.

Explanation:

Let assume that heat pump is reversible. The coefficient of performance for the heat pump is:

COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}

COP_{HP} = \frac{300\,K}{300\,K-260\,K}

COP_{HP} = 7.5

The claim is valid as real heat pumps have lower coefficients of performance.

3 0
3 years ago
What level of wildfire risk do people living in Boulder have?
Luba_88 [7]

Answer:

The risk of catastrophic wildfire is a real and serious threat facing those who reside in the forested areas of Boulder County. Dating back to the Black Tiger Fire of 1989, wildfires have collectively destroyed some 250 homes or other structures, burned over 16,000 acres, and threatened the lives and properties of thousands of mountain residents. In an attempt to mitigate the loss of life and property in Boulder County, the Land Use Department has included wildfire mitigation measures in the planning review and building permit process.

Explanation:

8 0
3 years ago
Conduct online research and write a short report on the origin and evolution of the meter as a measurement standard. Discuss how
valina [46]

Answer:

People have come up with all sorts of inventive ways of measuring length. The most intuitive are right at our fingertips. That is, they are based upon the human body: the foot, the hand, the fingers or the length of an arm or a stride.

In ancient Mesopotamia and Egypt, one of the first standard measures of length used was the cubit. In Egypt, the royal cubit, which was used to build the most important structures, was based on the length of the pharaoh’s arm from elbow to the end of the middle finger plus the span of his hand. Because of its great importance, the royal cubit was standardized using rods made from granite. These granite cubits were further subdivided into shorter lengths reminiscent of centimeters and millimeters.

piece of black rock with white Egyptian markings

Fragment of a Cubit Measuring Rod

Credit: Gift of Dr. and Mrs. Thomas H. Foulds, 1925

Later length measurements used by the Romans (who had taken them from the Greeks, who had taken them from the Babylonians and Egyptians) and passed on into Europe generally were based on the length of the human foot or walking and multiples and subdivisions of that. For example, the pace—one left step plus one right step—is approximately a meter or yard. (On the other hand, the yard did not derive from a pace but from, among other things, the length of King Henry I of England’s outstretched arm.) Mille passus in Latin, or 1,000 paces, is where the English word “mile” comes from.

And thus, the meter has and likely will remain so elegantly defined in these terms for the foreseeable future.

Explanation:

is this short enough

5 0
2 years ago
Other questions:
  • How does fouling affects the performance of a heat exchanger?
    6·1 answer
  • Does the army good 4 you
    15·1 answer
  • If a building is too humid, what harmful substance may be stored there?
    13·2 answers
  • 4. The friction point is the point
    12·1 answer
  • What type of drawing would civil engineers use if they needed to show an
    11·1 answer
  • Water of dynamic viscosity 1.12E-3 N*s/m2 flows in a pipe of 30 mm diameter. Calculate the largest flowrate for which laminar fl
    13·1 answer
  • If you are in a tornado situation, which of the following actions would put you in danger?
    11·1 answer
  • 1. What are the usual symptoms of brake issues?​
    15·1 answer
  • Is A fine by the EPA may be imposed on the employer or
    8·1 answer
  • When hermetic refrigerant motor-compressors are designed to operate continuously at currents greater than 156 percent of the rat
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!