1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madreJ [45]
4 years ago
8

Carbon dioxide flows at a rate of 1.5 ft3 /s from a 3-in. pipe in which the pressure and temperature are 20 psi (gage) and 120 °

F into a 1.5-in. pipe. If viscous effects are neglected and incompressible conditions are assumed, determine the pressure in the smaller pipe
Engineering
1 answer:
Monica [59]4 years ago
7 0

Answer:

the absolute pressure in the smaller pipe = 19.63 psi

Explanation:

Let A be the diameter of the first pipe = 3 inches

Let B be the diameter of the second pipe.  = 1.5 inches

To feet (ft) ; we have

Diameter of the pipe A D_1 = (\dfrac{3}{12})ft = 0.25  \ ft

Diameter of pipe B  D_1 = (\dfrac{1.5}{12})ft = 0.125  \ ft

Temperature T = 120° F = (120+ 460)°R

= 580 ° R

The pressure gage to atmospheric pressure ; we have:

P_{Absolute }=P _{Atm} + P_{guage}

where;

atmospheric pressure = 1.47 psi

pressure gage = 20 psi

P_{Absolute }=(1.47+20)psi

P_{Absolute }=34.7 \ psi

To lb/ft²; we have:

P_{Absolute }=(34.7 *144 ) lb/ft^2

P_{Absolute }= 4.998.6 fb/ft²

The density of carbon dioxide can be calculated by using the relation

\rho = \dfrac{P}{RT}

\rho = \dfrac{4996.8}{(1130 \ lb /slug ^0 R)*(580{^0} R)}

\rho = 7.64*10^{-3}\ slug /ft^3

Formula for calculating cross sectional area is

A = \dfrac{\pi}{4}D

For diameter of pipe D_1 = 0.025

A₁ = \dfrac{\pi}{4}*0.25^2

A₁ = 0.04909 ft²

For diameter of pipe D_2 - 0.0125

A₂ =\dfrac{\pi}{4}*0.125^2

A₂ = 0.012227 ft²

Using the continuity equation to determine the velocities V₁ and V₂ respectively.

For V₁

Q = A₁V₁

V₁ = Q₁/ A₁

V₁ = 1.5/0.04909

V₁ = 30.557 ft/s

For V₂

Q = A₂V₂

V₂= Q₂/ A₂

V₂ = 1.5/0.04909

V₂ = 30.557 ft/s

Finally; using Bernoulli's Equation to the flow of the carbon dioxide from the larger pipe to the smaller pipe ; we have:

p_1 + \dfrac{\rho V_1^2}{2}+\gamma Z_1= p_2 + \dfrac{\rho V_2^2}{2}+\gamma Z_2

Since the pipe is horizontal then;

\gamma Z_1= \gamma Z_2

So;

p_1 + \dfrac{\rho V_1^2}{2}= p_2 + \dfrac{\rho V_2^2}{2}

p_2 =p_1 +\dfrac{1}{2}  \rho(V_1^2-V_2^2)

p_2 =4996.8+\dfrac{1}{2}  *7.624*10^{-3}(30.557^2-122.23^2)

p_2 =4943.41 \ lb/ft^2

To psi;

p_2 =\dfrac{4943.41 }{144}psi

p_2 =34.33 \ psi gage

The absolute pressure in the smaller pipe can be calculated as:

p_2 _{absolute} = 34.33 - 14.7

p_2 _{absolute} = 19.63 \ \  absolute

Hence, the absolute pressure in the smaller pipe = 19.63 psi

You might be interested in
The change in specific internal energy depends on the path of a process. a)-True b)-False
Basile [38]

Answer:

(b) False

Explanation:

The specific internal energy of the system does not depend on the path of the process, it is a state function means its depend on only on the initial and the final position it does not depend on the path which it follow in the process.Internal energy is associated with the random motion of the molecules.

So it is false statement as internal energy is not a path function

7 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
Consider a resistor made of pure silicon with a cross-sectional area pf 0.5 μm2, and a length of 50 μm. What is the resistance o
lukranit [14]

Answer: 24 pA

Explanation:

As pure silicon is a semiconductor, the resistivity value is strongly dependent of temperature, as the main responsible for conductivity, the number of charge carriers (both electrons and holes) does.

Based on these considerations, we found that at room temperature, pure silicon resistivity can be approximated as 2.1. 10⁵  Ω  cm.

The resistance R of a given resistor, is expressed by the following formula:

R = ρ L / A

Replacing by the values for resistivity, L and A, we have

R = 2.1. 10⁵ Ω  cm. (10⁴ μm/cm). 50 μm/ 0.5 μm2

R = 2.1. 10¹¹ Ω

Assuming that we can apply Ohm´s Law, the current that would pass through this resistor for an applied voltage of 5 V, is as follows:

I = V/R = 5 V / 2.1.10¹¹ Ω = 2.38. 10⁻¹¹ A= 24 pA

7 0
3 years ago
The mechanical energy of an object is a combination of its potential energy and its
saveliy_v [14]

The mechanical energy of an object is a combination of its potential energy and its <em><u>kinetic</u></em><em><u> </u></em><em><u>energy</u></em><em><u>.</u></em>

6 0
2 years ago
Am I alive I really need to know?
Nesterboy [21]
Hell no,cause i’m not
5 0
3 years ago
Other questions:
  • Technician A says that you don’t need to use an exhaust extraction system when working on vehicles equipped with a catalytic con
    9·1 answer
  • An inflatable structure has the shape of a half-circular cylinder with hemispherical ends. The structure has a radius of 40 ft w
    6·1 answer
  • HELP PLEASE<br> this is for drivers ed btw
    5·1 answer
  • why HF (hydrogen fluoride) has higher boiling temperature than HCl (hydrogen chloride), even thought HF has lower molecular weig
    8·1 answer
  • List two common units of measurement to describe height
    5·2 answers
  • Different Gauss quadrature formulae predict different values for the same integral a. True b. False
    11·1 answer
  • A barometer reads a height of 78 cmHg. Express this atmospheric pressure to:
    15·2 answers
  • Make a sketch of a simple mechanically expanded brake and indicate the forces ​ ​ acting on the leading shoe when the brake is a
    10·1 answer
  • Excessive looseness in steering and suspension components can cause _____
    13·1 answer
  • What were some of the challenges to safety resulting from such radical airframe designs as highly swept wings, high wing loading
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!