Answer:
Q = 30284.88 j
Explanation:
Given data:
Mass of ethanol = 257 g
Cp = 2.4 j/g.°C
Chnage in temperature = ΔT = 49.1°C
Heat required = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Now we will put the values in formula.
Q = 257 g× 2.4 j/g.°C × 49.1 °C
Q = 30284.88 j
To contain the same number of atoms also mean to contain
the same number of moles. So let us say that X is the mass of Silver Ag
required, so that:
X / 107.87 = 10 / 10.81
<span>X = 99.79 g</span>
Answer:
frequency = 0.47×10⁴ Hz
Explanation:
Given data:
Wavelength of wave = 6.4× 10⁴ m
Frequency of wave = ?
Solution:
Formula:
Speed of wave = wavelength × frequency
Speed of wave = 3 × 10⁸ m/s
Now we will put the values in formula.
3 × 10⁸ m/s = 6.4× 10⁴ m × frequency
frequency = 3 × 10⁸ m/s / 6.4× 10⁴ m
frequency = 0.47×10⁴ /s
s⁻¹ = Hz
frequency = 0.47×10⁴ Hz
Thus the wave with wavelength of 6.4× 10⁴ m have 0.47×10⁴ Hz frequency.
Answer:
4.23.
Explanation:
<em>∵ pH = - log[H⁺].</em>
<em>For weak acids:</em>
∵ [H⁺] = √(ka)(c).
∴ [H⁺] = √(3.5 × 10⁻⁸)(0.10 M) = 5.92 x 10⁻⁵.
∴ pH = - log[H⁺] = - log(5.92 x 10⁻⁵) = 4.2279 ≅ 4.23.