1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
2 years ago
5

The potential difference across a and b is 15 v. determine the electrical charge on the 3 μf capacitor?

Physics
1 answer:
Slav-nsk [51]2 years ago
8 0

The potential difference across a and b is 15 v. determine the electrical charge on the 3 μf capacitor will be 45 *  10^{-6} C

Capacitance, property of an electric conductor, or set of conductors, that is measured by the amount of separated electric charge that can be stored on it per unit change in electrical potential. Capacitance also implies an associated storage of electrical energy.

Charge (Q) stored in a capacitor is the product of its capacitance (C) and the voltage (V) applied to it. The capacitance of a capacitor should always be a constant, known value. So we can adjust voltage to increase or decrease the cap's charge. More voltage means more charge, less voltage... less charge.

charge = capacitance * voltage

Q = CV

   =  3  * 10^{-6} * 15 v

   = 45 *  10^{-6} C

To learn more about capacitance here

brainly.com/question/14746225

#SPJ4

You might be interested in
A block of mass 200g is oscillating on the end of a horizontal spring of spring constant 100 N/m and natural length 12 cm. When
malfutka [58]

In order to determine the acceleration of the block, use the following formula:

F=ma

Moreover, remind that for an object attached to a spring the magnitude of the force acting over a mass is given by:

F=kx

Then, you have:

ma=kx

by solving for a, you obtain:

a=\frac{kx}{m}

In this case, you have:

k: spring constant = 100N/m

m: mass of the block = 200g = 0.2kg

x: distance related to the equilibrium position = 14cm - 12cm = 2cm = 0.02m

Replace the previous values of the parameters into the expression for a:

a=\frac{(\frac{100N}{m})(0.02m)}{0.2\operatorname{kg}}=10\frac{m}{s^2}

Hence, the acceleration of the block is 10 m/s^2

8 0
1 year ago
~choices below~
mart [117]
A is the correct answer
5 0
3 years ago
Read 2 more answers
Two identical loudspeakers 2.00 m apart are emitting sound waves into a room where the speed of sound is 340 m/s. Abby is standi
ki77a [65]

Answer:

The lowest possible frequency of sound for which this is possible is 1307.69 Hz

Explanation:

From the question, Abby is standing 5.00m in front of one of the speakers, perpendicular to the line joining the speakers.

First, we will determine his distance from the second speaker using the Pythagorean theorem

l₂ = √(2.00²+5.00²)

l₂ = √4+25

l₂ = √29

l₂ = 5.39 m

Hence, the path difference is

ΔL = l₂ - l₁

ΔL = 5.39 m - 5.00 m

ΔL = 0.39 m

From the formula for destructive interference

ΔL = (n+1/2)λ

where n is any integer and λ is the wavelength

n = 1 in this case, the lowest possible frequency corresponds to the largest wavelength, which corresponds to the smallest value of n.

Then,

0.39 = (1+ 1/2)λ

0.39 = (3/2)λ

0.39 = 1.5λ

∴ λ = 0.39/1.5

λ = 0.26 m

From

v = fλ

f = v/λ

f = 340 / 0.26

f = 1307.69 Hz

Hence, the lowest possible frequency of sound for which this is possible is 1307.69 Hz.

5 0
3 years ago
Please help, all about Mirrors and Lenses
romanna [79]
Answer: I think it’s 20cm.
3 0
3 years ago
Can someone please help me with science.
alekssr [168]

Answer:

The answers to your questions are given below

Explanation:

22. The energy of an electromagnetic wave and it's frequency are related by the following equation:

E = hf

Where:

E => is the energy

h => is the Planck's constant

f => is the frequency

From the equation i.e E = hf, we can conclude that the energy of a wave is directly proportional to it's frequency. This implies that an increase in the frequency of the wave will lead to an increase in the energy of the wave and also, a decrease in the frequency will lead to a decrease in the energy of the wave.

23. Gamma ray and radio wave are both electromagnetic waves. All electromagnetic waves has a constant speed of 3×10⁸ m/s in space.

Thus, gamma ray and radio wave have the same speed in space.

3 0
3 years ago
Other questions:
  • A 75-hp compressor in a facility that operates at full load for 2500 h a year is powered by an electric motor that has an effici
    7·1 answer
  • A mass weighing 32 pounds stretches a spring 2 feet. Determine the amplitude and period of motion if the mass is initially relea
    15·1 answer
  • What does resonance result in? Quieter sounds, frequency, amplitude
    9·2 answers
  • Which statement is true?
    5·2 answers
  • Which of the following is a property of all periodic waves?
    6·1 answer
  • WILL MARK BRAINLIEST IF THE ANSWER IS CORRECT Vinegar and baking soda react to form sodium acetate (NaC2H3O2), water (H2O), and
    11·1 answer
  • Describe the kinetic molecular theory
    5·1 answer
  • How do you find the instantaneous velocity on a position-time graph?
    6·1 answer
  • How do you find distance from average velocity and time
    7·1 answer
  • What is the mass of a bullet moving at 970 m/s if the bullet’s kinetic energy is 3.0 x 10^3 J?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!