Answer:
D. Pauli's exclusion principle
Explanation:
<em>A. Newton's laws</em> are related to the motion, they state that "Every object in a state of uniform motion will remain in that state of motion unless an external force acts on it", " Force equals mass times acceleration." and " For every action there is an equal and opposite reaction"
<em>B. Bohr's law </em>depicts an atom as a small, positively charged nucleus surrounded by electrons. These electrons travel in circular orbits around the nucleus.
<em>C. Aufbau principle</em>, also called the building-up principle or the aufbau rule, states that in the ground state of an atom or ion, electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels
<em>D. Pauli's exclusion principle</em> states that <em>no two fermions (e.g., electrons) in an atom can have the same set of quantum numbers,</em> hence they have to "pile up" or "build up" into higher energy levels.
I hope you find this information useful and interesting! Good luck!
Answer:
Explanation:
Answer
The true fact is that C is what happens in outer space. Both rotations take 27.3 days.
A: The exact opposite is true. It does rotate about it's axis.
B: Again this is just plain false. Given the way we observe it, the moon must be rotating around the earth.
D. they don't. 27.3 hours and 24 hours are not the same.
Ilana is togladly hospitalized for the loss and the loss and her family of the dead were in a coma and she had to go on the plane and then to go to a hotel and to see if the girl had a child and a woman was in a car crash or something like it could have caused a lot to happen with her body that could help him get out the next morning after a long day of work and a woman was in a condition of a new yo girl in her apartment and was taken into a car in a coma at a
Answer:
Intermolecular forces
Explanation:
The force of attractions that act between molecules are called intermolecular forces.
Their nature is electromagnetic, this means that they are just an expression of the electromagnetic force.
One example of intermolecular force is the ionic bond: this type of bond occurs when there are two ions, one positively charged and the other one negatively charged, and they are attracted by each other due to the electrostatic force, which therefore creates a bond between them.
Other types of intermolecular forces include:
Hydrogen bond
Ion-dipole forces
Van der Waals forces
The strength of these intermolecular forces determine the state of the substance. In fact, in solids, these forces are very strong, so that the molecules are strongly bond to each other and they cannot move freely, but only vibrate about their fixed position. On the other hand, in gases, these forces are very weak, therefore the molecules are able to move freely away from each other.