Answer:
each resistor is 540 Ω
Explanation:
Let's assign the letter R to the resistance of the three resistors involved in this problem. So, to start with, the three resistors are placed in parallel, which results in an equivalent resistance defined by the formula:
Therefore, R/3 is the equivalent resistance of the initial circuit.
In the second circuit, two of the resistors are in parallel, so they are equivalent to:
and when this is combined with the third resistor in series, the equivalent resistance () of this new circuit becomes the addition of the above calculated resistance plus the resistor R (because these are connected in series):
The problem states that the difference between the equivalent resistances in both circuits is given by:
so, we can replace our found values for the equivalent resistors (which are both in terms of R) and solve for R in this last equation:
Get your numbers gathered up and solve the problem in the ordered step
It should be 0.25kg because you converter from g to kg and since 1g<1kg so you move the decimal to the left
Answer:
Explanation:
Given:
Steam Mass rate, ms = 1.5 kg/min
= 1.5 kg/min × 1 min/60 sec
= 0.025 kg/s
Air Mass rate, ma = 100 kg/min
= 100 kg/min × 1 min/60 sec
= 1.67 kg/s
A.
Extracting the specific enthalpy and temperature values from property table of “Saturated water – Pressure table” which corresponds to temperature at 0.07 MPa.
xf, quality = 0.9.
Tsat = 89.9°C
hf = 376.57 kJ/kg
hfg = 2283.38 kJ/kg
Using the equation for specific enthalpy,
hi = hf + (hfg × xf)
= 376.57 + (2283.38 × 0.9)
= 2431.552 kJ/kg
The specific enthalpy of the outlet, h2 = hf
= 376.57 kJ/kg
B.
Rate of enthalpy (heat exchange), Q = mass rate, ms × change in specific enthalpy
= ms × (hi - h2)
= 0.025 × (2431.552 - 376.57)
= 0.025 × 2055.042
= 51.37455 kW
= 51.38 kW.
The fact that the layers of graphite are held together by only weak Van der Walls forces implies that they can slide over each other.
<h3>Why is graphite a solid lubricant?</h3>
We know that graphite is composed of layers. These hexagonal layers are held together by weak Van Der Walls forces and as such are able to slide over each other. The carbon atom in each layer are held together by strong covalent bonds.
The fact that the layers of graphite are held together by only weak Van der Walls forces implies that they can slide over each other and as such make the graphite fluid.
Thus, the image that shows these layers of graphite is attached to this an answer
Learn more about graphite:brainly.com/question/11095487
#SPJ1