when the thermal energy is the energy contained within a system that is responsible for its temperature.
and when the thermal energy is can be determined by this formula:
q = M * C *ΔT
when q is the thermal energy
and M is the mass of water = 100 g
and C is the specific heat capacity of water = 4.18 joules/gram.°C
and T is the difference in Temperature = 50 °C
So by substitution:
∴ q = 100 g * 4.18 J/g.°C * 50
= 20900 J = 20.9 KJ
Aluminum. chemical element with symbol Al
Explanation:
It's (D), nuclear fission................
Answer:
3. V = 0.2673 L
4. V = 2.4314 L
5. V = 0.262 L
6. V = 2.224 L
Explanation:
3. assuming ideal gas:
∴ R = 0.082 atm.L/K.mol
∴ V1 = 225 L
∴ T1 = 175 K
∴ P1 = 150 KPa = 1.48038 atm
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(175 K))/((1.48038 atm)(225 L))
⇒ n = 0.043 mol
∴ T2 = 112 K
∴ P2 = P1 = 150 KPa = 1.48038 atm
⇒ V2 = RT2n/P2
⇒ V2 = ((0.082 atm.L/K.mol)(112 K)(0.043 mol))/(1.48038 atm)
⇒ V2 = 0.2673 L
4. gas is heated at a constant pressure
∴ T1 = 180 K
∴ P = 1 atm
∴ V1 = 44.8 L
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(180 K))/((1 atm)(44.8 L))
⇒ n = 0.3295 mol
∴ T2 = 90 K
⇒ V2 = RT2n/P
⇒ V2 = ((0.082 atm.L/K.mol)(90 K)(0.3295 mol))/(1 atm)
⇒ V2 = 2.4314 L
5. V1 = 200 L
∴ P1 = 50 KPa = 0.4935 atm
∴ T1 = 271 K
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(271 K))/((0.4935 atm)(200 L))
⇒ n = 0.2251 mol
∴ P2 = 100 Kpa = 0.9869 atm
∴ T2 = 14 K
⇒ V2 = RT2n/P2
⇒ V2 = ((0.082 atm.L/K.mol)(14 K)(0.2251 mol))/(0.9869 atm)
⇒ V2 = 0.262 L
6.a) ∴ V1 = 24.6 L
∴ P1 = 10 atm
∴ T1 = 25°C = 298 K
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(298 K))/((10 atm)(24.6 L))
⇒ n = 0.0993 mol
∴ T2 = 273 K
∴ P2 = 101.3 KPa = 0.9997 atm
⇒ V2 = RT2n/P2
⇒ V2 = ((0.082 atm.L/K.mol)(273 K)(0.0993 mol))/(0.9997 atm)
⇒ V2 = 2.224 L
The answer is 23, 040 minutes. To solve this you can start by changing days in to hours. We know that there are 24 hours in a day. To find how many hours are in 16 days you multiply 24 by 16 which is 384. Next you must find out how many minutes are in 384 hours. we know there are 60 minutes per hour. To find how many minutes are in 384 hours, you multiply 384 by 60. To this you get 23, 040 which is your answer.