Answer:
Hello, the tripping of a 230-kilovolt transmission line.
Explanation:
the tripping of a 230-kilovolt transmission line near Ontario, Canada, at 5:16 p.m., which caused several other heavily loaded lines also to fail. Hopefully this helps you find what your looking for!.
Answer:
La velocidad del haz de electrones es 1.78x10⁵ m/s. Este valor se obtuvo asumiendo que el campo magnético dado (3500007) estaba en tesla y que la fuerza venía dada en nN.
Explanation:
Podemos encontrar la velocidad del haz de electrones usando la Ley de Lorentz:
(1)
En donde:
F: es la fuerza magnética = 100 nN
q: es el módulo de la carga del electron = 1.6x10⁻¹⁹ C
v: es la velocidad del haz de electrones =?
B: es el campo magnético = 3500007 T
θ: es el ángulo entre el vector velocidad y el campo magnético = 90°
Introduciendo los valores en la ecuación (1) y resolviendo para "v" tenemos:
Este valor se calculó asumiendo que el campo magnético está dado en tesla (no tiene unidades en el enunciado). De igual manera se asumió que la fuerza indicada viene dada en nN.
Entonces, la velocidad del haz de electrones es 1.78x10⁵ m/s.
Espero que te sea de utilidad!
Answer:
4.1 m
Explanation:
10 kW = 10000 W
20mi/h = 20*1.6 km/mi = 32 km/h = 32 * 1000 (m/km) *(1/3600) hr/s = 8.89 m/s
The power yielded by the wind turbine can be calculated using the following formula

where
is the air density, v = 8.89 m/s is the wind speed, A is the swept area and
is the efficiency



The swept area is a circle with radius r being the blade length



Answer:
Arrange an annual service. Treat your boiler like your car. ...
Keep your boiler clean. ...
Bleed your radiators. ...
Top up the pressure. ...
Use a Powerflush. ...
Insulate your pipes. ...
Turn the heating on. ...
If all else fails…
Explanation:
A boy shooting a rubber band across the classroom -->
Elastic potential energy transformed into kinetic energy
<span>The initial energy is the energy stored in the muscles of the boy's arm, which is elastic potential energy. This is converted into motion of the rubber, therefore kinetic energy
A child going down a slide on a playground --> </span>Gravitational potential energy transformed into kinetic energy
On top of the slide, all the energy of the child is gravitational potential energy due to its height with respect to the ground (E=mgh). when it moves down the slide, this is converted into kinetic energy, because the child acquires a speed v (E=1/2 mv^2)
<span>
Rubbing your hands together to warm them on a cold day --> </span>Kinetic energy being transformed into thermal energy <span>
When rubbing hands, we are moving them (kinetic energy), and this energy raises the temperature of the hand's surface (thermal energy)
Turning on a battery operated light --> </span>
Chemical potential energy transformed into radiant energy <span>
A battery works by mean of chemical reactions (chemical potential energy), producing light (so, emitting energy by radiation, i.e. radiant energy)
Using a dc electric motor --> </span> Electrical energy transformed into kinetic energy<span>
A dc electric motor works using currents (so, electrical energy), and the energy produced can be used for example to accelerate a car (kinetic energy)
Using a gas power heater to warm a room --> </span>Chemical potential energy transformed into thermal energy
<span>A gas power heater burns gases (so, chemical reaction, i.e. chemical potential energy) to raise the temperature of the room (thermal energy)
Using a hand crank generator to produce electric current --> Kinetic energy transformed into electrical energy
In a hand-crank generator, the handle is being rotated (kinetic energy) in order to produce an electric current (electrical energy)
Using the light in your room that is plugged into the wall --> </span>Electrical energy transformed into radiant energy
<span>The lamp works by using electrical current flowing into a resistor (electrical energy) and it produces light, so it emits energy by electromagnetic radiation (radiant energy)
</span> <span>
</span>