Answer:
Bueno,
Explanation:
Tres pesnamientos negativos sobre el C0Vid-19 son,
- Encerrados en la casa
- Tener que ponerse mascara
- Todos los lugares divertidos cerrados
Convertidos en positivos:
- Pasamos mas tiempo de calidad en familia.
- Nos protejemos unos a otros.
- Descansan un poco todas las personas que se han pasado toda la vida trabajando.
<u>Answer:</u> No crystals of potassium sulfate will be seen at 0°C for the given amount.
<u>Explanation:</u>
We are given:
Mass of potassium nitrate = 47.6 g
Mass of potassium sulfate = 8.4 g
Mass of water = 130. g
Solubility of potassium sulfate in water at 0°C = 7.4 g/100 g
This means that 7.4 grams of potassium sulfate is soluble in 100 grams of water
Applying unitary method:
In 100 grams of water, the amount of potassium sulfate dissolved is 7.4 grams
So, in 130 grams of water, the amount of potassium sulfate dissolved will be ![\frac{7.4}{100}\times 130=9.62g](https://tex.z-dn.net/?f=%5Cfrac%7B7.4%7D%7B100%7D%5Ctimes%20130%3D9.62g)
As, the soluble amount is greater than the given amount of potassium sulfate
This means that, all of potassium sulfate will be dissolved.
Hence, no crystals of potassium sulfate will be seen at 0°C for the given amount.
Answer:
102g
Explanation:
To find the mass of ethanol formed, we first need to ensure that we have a balanced chemical equation. A balanced chemical equation is where the number of atoms of each element is the same on both sides of the equation (reactants and products). This is useful as only when a chemical equation is balanced, we can understand the relationship of the amount (moles) of reactant and products, or to put it simply, their relationship with one another.
In this case, the given equation is already balanced.
![\tex{C_6H_{12}O_6} \longrightarrow 2 \ C_2H_6O + 2 \ CO_2](https://tex.z-dn.net/?f=%5Ctex%7BC_6H_%7B12%7DO_6%7D%20%5Clongrightarrow%202%20%5C%20C_2H_6O%20%2B%202%20%5C%20CO_2)
From the equation, the amount of ethanol produced is twice the amount of yeast present, or the same amount of carbon dioxide produced. Do note that amount refers to the number of moles here.
Mole= Mass ÷Mr
Mass= Mole ×Mr
<u>Method 1: using the </u><u>mass of glucose</u>
Mr of glucose
= 6(12) +12(1) +6(16)
= 180
Moles of glucose reacted
= 200 ÷180
=
mol
Amount of ethanol formed: moles of glucose reacted= 2: 1
Amount of ethanol
= ![2(\frac{10}{9} )](https://tex.z-dn.net/?f=2%28%5Cfrac%7B10%7D%7B9%7D%20%29)
=
mol
Mass of ethanol
= ![\frac{20}{9} \times[2(12)+6+16]](https://tex.z-dn.net/?f=%5Cfrac%7B20%7D%7B9%7D%20%5Ctimes%5B2%2812%29%2B6%2B16%5D)
= ![\frac{20}{9}(46)](https://tex.z-dn.net/?f=%5Cfrac%7B20%7D%7B9%7D%2846%29)
= 102 g (3 s.f.)
<u>Method 2: using </u><u>mass of carbon dioxide</u><u> produced</u>
Mole of carbon dioxide produced
= 97.7 ÷[12 +2(16)]
= 97.7 ÷44
=
mol
Moles of ethanol: moles of carbon dioxide= 1: 1
Moles of ethanol formed=
mol
Mass of ethanol formed
= ![\frac{977}{440} \times[2(12)+6+16]](https://tex.z-dn.net/?f=%5Cfrac%7B977%7D%7B440%7D%20%5Ctimes%5B2%2812%29%2B6%2B16%5D)
= 102 g (3 s.f.)
Thus, 102 g of ethanol are formed.
Additional:
For a similar question on mass and mole ratio, do check out the following!
Answer:
Henry Moseley
Explanation:
Dmitry Mendeleef and Lothar Meyer proposed a periodic table based on the atomic mass.
They stated a periodic law expressed as "chemical properties of elements are a periodic function of their atomic weights".
But, Henry Moseley in 1900s re-stated periodic law by changing the basis of the law from atomic weight to atomic number.
The present periodic law is stated as "the properties of elements are a periodic function of their atomic number".