1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
3 years ago
10

There is less oxygen in air at higher altitudes than at sea level. Scientists have shown that people living at sea level have 5

million red blood cells per mm3 of blood whereas people living at high altitude have 7 million red blood cells per mm3 of blood. Suggest a reason for this difference
Physics
1 answer:
Ivanshal [37]3 years ago
5 0

Answer with Explanation:

"Red Blood Cells" <em>(RBCs)</em> contain <em>Hemoglobin</em> that is responsible for carrying oxygen into the body. When people are exposed to higher altitudes, <u>the number RBCs in the body increases</u>. This is because the body has a hard time taking in oxygen due to <u>low atmospheric pressure</u>. It makes it hard for oxygen to pass through the lung membranes. This is called "hypoxia." Such condition deprives the body from oxygen, thus, it creates more red blood cells in order to compensate the condition.

When it comes to people living at sea level,<em> the oxygen can easily pass through the lung membranes</em> due to <u>higher atmospheric pressure.</u> This doesn't require the body to build new RBCs. Therefore, the numbers of RBCs needed by people to thrive is lower than living at higher altitudes.

You might be interested in
A block is pulled across a flat surface at a constant speed using a force of 50 newtons at an angle of 60 degrees above the hori
vladimir2022 [97]

The magnitude of the friction force is 25 N

Explanation:

To solve this problem, we just have to analyze the forces acting on the block along the horizontal direction. We have:

  • The horizontal component of the pulling force, F cos \theta, where F = 50 N is the magnitude and \theta=60^{\circ} is the angle between the direction of the force and the horizontal; this force acts in the  forward direction
  • The force of friction, F_f, acting in the backward direction

According to Newton's second law, the net force acting on the block in the horizontal direction must be equal to the product between the mass of the block and its acceleration:

\sum F_x = ma_x

where

m is the mass of the block

a_x is the horizontal acceleration

However, the block is moving at constant speed, so the acceleration is zero:

a_x = 0

So the equation becomes

\sum F_x = 0 (1)

The net force here is given by

\sum F_x = F cos \theta - F_f (2)

And so, by combining (1) and (2), we find the magnitude of the friction force:

F cos \theta - F_f = 0\\F_f = F cos \theta = (50)(cos 60^{\circ})=25 N

Learn more about  force of friction:

brainly.com/question/6217246

brainly.com/question/5884009

brainly.com/question/3017271

brainly.com/question/2235246

#LearnwithBrainly

4 0
3 years ago
How much work is done to move 2.10 μC of charge from the negative terminal to the positive terminal of a 3.50 V battery?
rjkz [21]

Answer:

6.3E-6

Explanation:

Workdone = V Q

4 0
3 years ago
Are y'all into spirituality ?
Afina-wow [57]
Yeah
why are you ???
8 0
3 years ago
Read 2 more answers
A piano tuner is using a 392 Hz tuning fork to tune the wire for a G-Natural note. She hears 4 beats per second. What are the tw
inysia [295]

A beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies. Frequency beat is equal to,

f_{beat} =| f_2\pm f_1 |

The reference frequency in our case would be 392Hz, and since there is the possibility of the upper and lower range for the amount of beats per second that the two possible frequencies are heard would be

f_{beat} =|392+4|= 396Hz

f_{beat} =|392-4|=388Hz

Therefore the two possible frequencies the piano wire is vibrating at, would be 396Hz and 388Hz

5 0
3 years ago
Why do heavier objects fall at the same speed as lighter ones?
GaryK [48]
Speed of any freely falling object is always same. Provided, both are left to fall from the same height. If you perform this experiment in a perfect vacuum or near vacuum laboratory, both of them will reach ground with same velocity this is because there is no resistance to their motion. This is always true no matter where you go and perform this experiment. 
It can be easily proved from conservation of mechanical energy. Why conserving energy? because there are no forces acting on the freely falling objects other than conservative force(mg). 

5 0
3 years ago
Other questions:
  • The process of bone formation from fibers or cartilage is called
    12·2 answers
  • Most ionic bonds form when electrons from____.
    15·2 answers
  • PLEASE HELPPPP ME WITH THIS
    14·1 answer
  • Light passes through a pair of narrow slits with a 0.67-mm separation. It is found that the fourth bright fringe makes an angle
    9·1 answer
  • Help? 25 points and will give brainliest!
    13·1 answer
  • Can someone help? I’ll give brainlest .
    11·2 answers
  • when a human cannon ball shoots in the air for 9 seconds, she travels 37 meters before ut lands. Caculate the speed​
    7·1 answer
  • Would the following reaction be endothermic or exothermic? Why?
    15·1 answer
  • (answer the question or get reported) Please solve it with the steps thanks :)​
    10·1 answer
  • When Stone B collides with Stone A during Test 2, Stone B stops and Stone A begins to move. Which statement BEST describes the m
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!