Answer:
Mass of original sample = 100 g
Explanation:
Half life of cesium-137 = 30.17 years
Where, k is rate constant
So,
The rate constant, k = 0.02297 year⁻¹
Time = 90.6 years
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Initial concentration
= ?
Final concentration
= 12.5 grams
Applying in the above equation, we get that:-
![[A_0]=\frac{12.5}{e^{-0.02297\times 90.6}}\ g=100\ g](https://tex.z-dn.net/?f=%5BA_0%5D%3D%5Cfrac%7B12.5%7D%7Be%5E%7B-0.02297%5Ctimes%2090.6%7D%7D%5C%20g%3D100%5C%20g)
<u>Mass of original sample = 100 g</u>
The answer for the question above is A. the gravitational pull of the moon on the water near the coast. The sun and and the moon are responsible for the rising and falling of the ocean tides. The gravitational pull of the moon and the sun makes the water in the oceans bulge, causing a continuous change between high and low tide.
This must be a universal indicator, the pH is going down everytime you add more :)
Water moved through the water cycle by changing its state. Think, for example, of water evaporating (liquid to gas), snow sublimating (solid to gas) or melting (solid to liquid), rain (gas to liquid), sleet (liquid to solid), or snow (gas to solid).
The answer would thus be A.
Answer:
Explanation:
A) O2 (non polar covalent)
B) HF (polar covalent)
C) NaCl (because its ionic)
im not 100% sure hope it helps