Answer:
The minimum mass flow rate will be "330 kg/s".
Explanation:
Given:
For steam,
![m_{s}=5.55 \ kg/s](https://tex.z-dn.net/?f=m_%7Bs%7D%3D5.55%20%5C%20kg%2Fs)
![\Delta h=2491 \ kg/kj](https://tex.z-dn.net/?f=%5CDelta%20h%3D2491%20%5C%20kg%2Fkj)
For water,
![\Delta T=10^{\circ}C](https://tex.z-dn.net/?f=%5CDelta%20T%3D10%5E%7B%5Ccirc%7DC)
![(Cp)_{w}=4.184 \ kJ/kg^{\circ}C](https://tex.z-dn.net/?f=%28Cp%29_%7Bw%7D%3D4.184%20%5C%20kJ%2Fkg%5E%7B%5Ccirc%7DC)
They add energy efficiency as condenser becomes adiabatic, with total mass flow rate of minimal vapor,
⇒ ![m_{s}\times (\Delta h)=M_{w}\times(Cp)_{w}\times \Delta T](https://tex.z-dn.net/?f=m_%7Bs%7D%5Ctimes%20%28%5CDelta%20h%29%3DM_%7Bw%7D%5Ctimes%28Cp%29_%7Bw%7D%5Ctimes%20%5CDelta%20T)
On putting the estimated values, we get
⇒ ![5.55\times 2491=M_{w}\times 4.184\times 10\\](https://tex.z-dn.net/?f=5.55%5Ctimes%202491%3DM_%7Bw%7D%5Ctimes%204.184%5Ctimes%2010%5C%5C)
⇒ ![13825.05=M_{w}\times 41.84](https://tex.z-dn.net/?f=13825.05%3DM_%7Bw%7D%5Ctimes%2041.84)
⇒ ![M_{w}=330 \ kg/s](https://tex.z-dn.net/?f=M_%7Bw%7D%3D330%20%5C%20kg%2Fs)
Answer:
the generator induced voltage is 60.59 kV
Explanation:
Given:
S = 150 MVA
Vline = 24 kV = 24000 V
![X_{s} =1.23(\frac{V_{line}^{2} }{s} )=1.23\frac{24000^{2} }{1500} =4723.2 ohms](https://tex.z-dn.net/?f=X_%7Bs%7D%20%3D1.23%28%5Cfrac%7BV_%7Bline%7D%5E%7B2%7D%20%20%7D%7Bs%7D%20%29%3D1.23%5Cfrac%7B24000%5E%7B2%7D%20%7D%7B1500%7D%20%3D4723.2%20ohms)
the network voltage phase is
![V_{phase} =\frac{V_{nline} }{\sqrt{3} } =\frac{27}{\sqrt{3} } =15.58kV](https://tex.z-dn.net/?f=V_%7Bphase%7D%20%3D%5Cfrac%7BV_%7Bnline%7D%20%7D%7B%5Csqrt%7B3%7D%20%7D%20%3D%5Cfrac%7B27%7D%7B%5Csqrt%7B3%7D%20%7D%20%3D15.58kV)
the power transmitted is equal to:
![|E|=\frac{P*X_{s} }{3*|V_{phase}|sinO } ;if-O=60\\|E|=\frac{300*4.723}{3*15.58*sin60} =34.98kV](https://tex.z-dn.net/?f=%7CE%7C%3D%5Cfrac%7BP%2AX_%7Bs%7D%20%7D%7B3%2A%7CV_%7Bphase%7D%7CsinO%20%7D%20%3Bif-O%3D60%5C%5C%7CE%7C%3D%5Cfrac%7B300%2A4.723%7D%7B3%2A15.58%2Asin60%7D%20%3D34.98kV)
the line induced voltage is
![|E_{line} |=\sqrt{3} *|E|=\sqrt{3} *34.98=60.59kV](https://tex.z-dn.net/?f=%7CE_%7Bline%7D%20%7C%3D%5Csqrt%7B3%7D%20%2A%7CE%7C%3D%5Csqrt%7B3%7D%20%2A34.98%3D60.59kV)
Answer:
![Activation\ Energy=2.5\times 10^{-19}\ J](https://tex.z-dn.net/?f=Activation%5C%20Energy%3D2.5%5Ctimes%2010%5E%7B-19%7D%5C%20J)
Explanation:
Using the expression shown below as:
![N_v=N\times e^{-\frac {Q_v}{k\times T}](https://tex.z-dn.net/?f=N_v%3DN%5Ctimes%20e%5E%7B-%5Cfrac%20%7BQ_v%7D%7Bk%5Ctimes%20T%7D)
Where,
is the number of vacancies
N is the number of defective sites
k is Boltzmann's constant = ![1.38\times 10^{-23}\ J/K](https://tex.z-dn.net/?f=1.38%5Ctimes%2010%5E%7B-23%7D%5C%20J%2FK)
is the activation energy
T is the temperature
Given that:
![N_v=2.3\times 10^{13}](https://tex.z-dn.net/?f=N_v%3D2.3%5Ctimes%2010%5E%7B13%7D)
N = 10 moles
1 mole = ![6.023\times 10^{23}](https://tex.z-dn.net/?f=6.023%5Ctimes%2010%5E%7B23%7D)
So,
N = ![10\times 6.023\times 10^{23}=6.023\times 10^{24}](https://tex.z-dn.net/?f=10%5Ctimes%206.023%5Ctimes%2010%5E%7B23%7D%3D6.023%5Ctimes%2010%5E%7B24%7D)
Temperature = 425°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (425 + 273.15) K = 698.15 K
T = 698.15 K
Applying the values as:
![2.3\times 10^{13}=6.023\times 10^{24}\times e^{-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}](https://tex.z-dn.net/?f=2.3%5Ctimes%2010%5E%7B13%7D%3D6.023%5Ctimes%2010%5E%7B24%7D%5Ctimes%20e%5E%7B-%5Cfrac%20%7BQ_v%7D%7B1.38%5Ctimes%2010%5E%7B-23%7D%5Ctimes%20698.15%7D)
![ln[\frac {2.3}{6.023}\times 10^{-11}]=-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}](https://tex.z-dn.net/?f=ln%5B%5Cfrac%20%7B2.3%7D%7B6.023%7D%5Ctimes%2010%5E%7B-11%7D%5D%3D-%5Cfrac%20%7BQ_v%7D%7B1.38%5Ctimes%2010%5E%7B-23%7D%5Ctimes%20698.15%7D)
![Q_v=2.5\times 10^{-19}\ J](https://tex.z-dn.net/?f=Q_v%3D2.5%5Ctimes%2010%5E%7B-19%7D%5C%20J)
Answer: ![10.631\times 10^3\ N/m^2](https://tex.z-dn.net/?f=10.631%5Ctimes%2010%5E3%5C%20N%2Fm%5E2)
Explanation:
Given
Discharge is ![Q=12.5\ L](https://tex.z-dn.net/?f=Q%3D12.5%5C%20L)
Diameter of pipe ![d=150\ mm](https://tex.z-dn.net/?f=d%3D150%5C%20mm)
Distance between two ends of pipe ![L=800\ m](https://tex.z-dn.net/?f=L%3D800%5C%20m)
friction factor ![f=0.008](https://tex.z-dn.net/?f=f%3D0.008)
Average velocity is given by
![\Rightarrow v_{avg}=\dfrac{12.5\times 10^{-3}}{\frac{\pi }{4}(0.15)^2}\\\\\Rightarrow v_{avg}=\dfrac{15.9134\times 10^{-3}}{2.25\times 10^{-2}}\\\\\Rightarrow v_{avg}=7.07\times 10^{-1}\\\Rightarrow v_{avg}=0.707\ m/s](https://tex.z-dn.net/?f=%5CRightarrow%20v_%7Bavg%7D%3D%5Cdfrac%7B12.5%5Ctimes%2010%5E%7B-3%7D%7D%7B%5Cfrac%7B%5Cpi%20%7D%7B4%7D%280.15%29%5E2%7D%5C%5C%5C%5C%5CRightarrow%20v_%7Bavg%7D%3D%5Cdfrac%7B15.9134%5Ctimes%2010%5E%7B-3%7D%7D%7B2.25%5Ctimes%2010%5E%7B-2%7D%7D%5C%5C%5C%5C%5CRightarrow%20v_%7Bavg%7D%3D7.07%5Ctimes%2010%5E%7B-1%7D%5C%5C%5CRightarrow%20v_%7Bavg%7D%3D0.707%5C%20m%2Fs)
Pressure difference is given by
![\Rightarrow \Delta P=f\ \dfrac{L}{d}\dfrac{\rho v_{avg}^2}{2}\\\\\Rightarrow \Delta P=0.008\times \dfrac{800}{0.15}\times \dfrac{997\times (0.707)^2}{2}\\\\\Rightarrow \Delta P=10,631.45\ N/m^2\\\Rightarrow \Delta P=10.631\ kPa](https://tex.z-dn.net/?f=%5CRightarrow%20%5CDelta%20P%3Df%5C%20%5Cdfrac%7BL%7D%7Bd%7D%5Cdfrac%7B%5Crho%20v_%7Bavg%7D%5E2%7D%7B2%7D%5C%5C%5C%5C%5CRightarrow%20%5CDelta%20P%3D0.008%5Ctimes%20%5Cdfrac%7B800%7D%7B0.15%7D%5Ctimes%20%5Cdfrac%7B997%5Ctimes%20%280.707%29%5E2%7D%7B2%7D%5C%5C%5C%5C%5CRightarrow%20%5CDelta%20P%3D10%2C631.45%5C%20N%2Fm%5E2%5C%5C%5CRightarrow%20%20%5CDelta%20P%3D10.631%5C%20kPa)