78950W the answer
Explanation:
A 75- kw, 3-, Y- connected, 50-Hz 440- V cylindrical synchronous motor operates at rated condition with 0.8 p.f leading. the motor efficiency excluding field and stator losses, is 95%and X=2.5ohms. calculate the mechanical power developed, the Armature current, back e.m.f, power angle and maximum or pull out torque of the motor
A 75- kw, 3-, Y- connected, 50-Hz 440- V cylindrical synchronous motor operates at rated condition with 0.8 p.f leading. the motor efficiency excluding field and stator losses, is 95%and X=2.5ohms. calculate the mechanical power developed, the Armature current, back e.m.f, power angle and maximum or pull out torque of the motor
Answer: 5.36×10-3kg/h
Where 10-3 is 10 exponential 3 or 10 raised to the power of -3.
Explanation:using the formula
M =JAt = -DAt×Dc/Dx
Where D is change in the respective variables. Insulting the values we get,
=5.1 × 10-8 × 0.13 × 3600 × 2.9 × 0.31 / 4×10-3.
=5.36×10-3kg/h
This question is about Circle Geometry. it evaluates connected and broken lines with respect to circles.
<h3>What is Circle Geometry?</h3>
This refers to the body of knowledge in mathematics that has to do with the various problems associated with the Circle.
In real-world scenarios, circle geometry is used in technologies involving:
- Camera lenses
- Circular Architectural structures
- Steering Wheels
- Buttons etc.
Learn more about Circle Geometry at:
brainly.com/question/24375372
Answer:
The total tube surface area in m² required to achieve an air outlet temperature of 850 K is 192.3 m²
Explanation:
Here we have the heat Q given as follows;
Q = 15 × 1075 × (1100 -
) = 10 × 1075 × (850 - 300) = 5912500 J
∴ 1100 -
= 1100/3
= 733.33 K

Where
= Arithmetic mean temperature difference
= Inlet temperature of the gas = 1100 K
= Outlet temperature of the gas = 733.33 K
= Inlet temperature of the air = 300 K
= Outlet temperature of the air = 850 K
Hence, plugging in the values, we have;

Hence, from;
, we have
5912500 = 90 × A × 341.67

Hence, the total tube surface area in m² required to achieve an air outlet temperature of 850 K = 192.3 m².