Answer:
the answer would be A and B
Answer:
Explanation:
The magnitude of the acceleration makes an angle of 30° with the tangential velocity.
Resolving the acceleration to tangential and radial acceleration
at = aCos30 = √3a/2
ar = aSin30 = ½a
a = 2•ar
Then, the tangential acceleration is the linear acceleration, so the relationship between the tangential acceleration and angular acceleration is given as:
at = Rα
Then, α = at/R
since at = √3a/2
Then, α = √3 at/2R, equation 1
The radial acceleration is given as
ar = ω²R
Note that, at² + ar² = a²
at = √(a²-ar²)
Back to equation 1
α = √3 at/2R
α = √3√(a²-ar²)/2R
α = √3√(a²-(w²R)²)/2R
α = √3(a²-w⁴R²) / 2R
Also, a = 2•ar = 2w²R
Then,
α = √3((2w²R)²-w⁴R²) / 2R
α = √3(4w⁴R²-w⁴R²) / 2R
α = √3(3w⁴R²) / 2R
α = √9w⁴R² / 2R
α = 3w²R / 2R
α = 3w²/2
The frequency of the wave is 132 Hz
Explanation:
To calculate the speed of the wave, we can use the following formula:

where
d is the distance travelled by the wave
t is the time elapsed
For the sound wave in this problem, we have:
d = 660 m is the distance travelled
t = 2 s is the time interval considered
Substituting and solving for v, we find the speed of the sound wave:

Now we can calculate the frequency of the wave by using the wave equation:

where
v = 330 m/s is the speed of the wave
is the wavelength
f is the frequency
Solving for f, we find:

Learn more about wavelength and frequency:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
Answer:
A
Explanation:
Initial gravitational energy = final kinetic energy + heat
mgh = KE + Q
(50 kg) (9.81 m/s²) h = 78400 J + 884000 J
h = 1960 meters
Answer:
196.34 °F
Explanation:
To convert from degrees celsius to degrees fahrenheit, use this equation:
(°C * 9/5) + 32 = °F
So, using this equation:
(91.30 * 9/5) + 32 = °F
196.34 + 32 = °F
°F = 196.34
Hope this helps!