1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepladder [879]
4 years ago
9

Briefly describe the characteristics of each soil horizon from the top layer to the bottom layer

Physics
1 answer:
inna [77]4 years ago
7 0
<span>There is six horizen. 1. O Horizon - The top, organic layer of soil, 2. A Horizon - The layer called topsoil; 3. E Horizon - This layer is beneath the A Horizon and above the B Horizon. It is made up mostly of sand. 4. B Horizon - Also called the subsoil - this layer is beneath the E Horizon and above the C Horizon. 5. C Horizon - it's called regolith: the layer beneath the B Horizon and above the R Horizon. 6 R Horizon - this is last and the unweathered rock layer that is beneath all the other layers.</span>
You might be interested in
A certain metal wire has a cross sectional area of 1 mm2 and is 1 m long. when it is hung from the ceiling and a 10 kg mass is h
kvasek [131]
From the Hooke's law , the extension force of an elastic material is directly proportional to the extension. 
That is, F = k e, where F is the force , k is the constant and e is the extension
 F = 10 × 10 = 100 N
e = 1mm or 0.001 m
Hence, k = F/e
                = 100 N/ 0.001
                = 100000 N/m or 100 N/mm
5 0
3 years ago
A 2kg book is held against a vertical wall. The coefficient of friction is 0.45. What is the minimum force that must be applied
Vika [28.1K]

We have that for the Question "A 2kg book is held against a vertical wall. The <em>coefficient </em>of friction is 0.45. What is the minimum force that must be applied on the <em>book</em>, perpendicular to the wall, to prevent the book from slipping down the wal" it can be said that  the minimum force that must be applied on the <em>book is</em>

  • F=44N

From the question we are told

A 2kg book is held against a vertical wall. The <em>coefficient </em>of friction is 0.45. What is the minimum force that must be applied on the <em>book</em>, perpendicular to the wall, to prevent the book from slipping down the wal

Generally the equation for the  Force  is mathematically given as

F=\frac{mg}{\mu}\\\\F=\frac{2*9.8}{0.45}\\\\

F=44N

Therefore

the minimum force that must be applied on the <em>book is</em>

F=44N

For more information on this visit

brainly.com/question/23379286

8 0
2 years ago
An archer shoots an arrow with a mass of 45.0 grams from bow pulled
Sladkaya [172]

Answer:

The force the archer need to pull in order to achieve the height is approximately 101.8 N

Explanation:

By energy conservation principle, puling an elastic bow with a force, for a given distance, performs work which is converted to the potential energy of the arrow at height

The given parameters are;

The mass of the arrow, m = 45.0 grams = 0.045 kg

The distance the elastic bow is pulled, d = 65.0 cm = 0.65 m

The height at which the arrow is reaches, h = 150.0 meters

Let 'F', represent the force the archer need to pull in order to achieve the height

Work done, W = Force × Distance moved in the direction of the force

Therefore;

The work done in pulling the arrow, W = F × d

By energy conservation, we have;

The work done in pulling the arrow, W = The potential energy gained by the arrow, P.E.

W = P.E.

The potential energy gained by the arrow, P.E. = m·g·h

Where;

m = The mass of the arrow

g = The acceleration due to gravity = 9.8 m/s²

h = The height the arrow reaches

∴ by plugging in the values, P.E. = 0.045 kg ×9.8 m/s² × 150 m = 66.15 J

W = F × d = F × 0.065 m

Also, W = P.E. = 66.15 J

∴ W = F × 0.065 m = 66.15 J

F × 0.065 m = 66.15 J

F = 66.15 J/(0.65 m) = 1323/13 N ≈ 101.8 N

The force the archer need to pull in order to achieve the height, F ≈ 101.8 N.

3 0
3 years ago
A stereo speaker produces a pure \"E\" tone, with a frequency of 329.6 Hz. What is the period of the sound wave produced by the
olya-2409 [2.1K]

Answer:

0.003034 s

1.035 m

4.5 m

Explanation:

f = frequency of the tone = 329.6 Hz

T = Time period of the sound wave

we know that, Time period and frequency are related as

T =\frac{1}{f}\\T =\frac{1}{329.6}\\T = 0.003034 s

v = speed of the sound in the air = 341 ms⁻¹

wavelength of the sound is given as

\lambda =\frac{v}{f} \\\lambda =\frac{341}{329.6}\\\lambda = 1.035 m

v = speed of the sound in the water = 1480 ms⁻¹

wavelength of the sound in water is given as

\lambda =\frac{v}{f} \\\lambda =\frac{1480}{329.6}\\\lambda = 4.5 m

8 0
3 years ago
A large helium filled balloon is used as the center piece for a graduation party. The balloon alone has a mass of 222 kg and it
inn [45]

Answer:

The buoyant force is 3778.8 N in upward.

Explanation:

Given that,

Mass of balloon = 222 Kg

Volume = 328 m³

Density of air = 1.20 kg/m³

Density of helium = 0.179 kg/m³

We need to calculate the buoyant force acting

Using formula of buoyant force

F_{b}=\rho_{air}\times V_{b}\times g

Where, \rho_{air} = density of air

V = Volume of balloon

g = acceleration due to gravity

Put the value into the formula

F_{b}=1.20\times321\times9.81

F_{b}=3778.8\ N

This buoyant force is in upward direction.

Hence, The buoyant force is 3778.8 N in upward.

4 0
3 years ago
Other questions:
  • What is the guiding principle behind the behavior of energy???? PLEASE HELP ASAP!!!
    13·2 answers
  • There are usually _________ collisions in a motor vehicle crash.
    5·1 answer
  • A 63 kg ice skater finishes her performance and crossed the finish line with a speed of 10.8 m/s.
    7·1 answer
  • A runner whose mass is 54 kg accelerates from a stop to a speed of 7 m/s in 3 seconds. (A good sprinter can run 100 meters in ab
    9·1 answer
  • The composition and properties of a(n) _____ are always constant throughout a given sample and from sample to sample
    13·1 answer
  • If an object is dropped from a height of 144 feet, the function h(t)= -16t^2+144 gives the height of the object after t seconds.
    7·1 answer
  • The skater is has a mass of 75 kg. Find the total Potential energy of the skater at the top of the ramp at 6 m.
    10·1 answer
  • A sound wave travels through water. What best describes the direction of the water particles? The water particles move perpendic
    7·1 answer
  • A string of length 4m is extended by 0.02m, when a load of 0.4kg is suspended at its end. What will be the length of the string,
    6·1 answer
  • Josh and jake are both helping to build a brick wall which is 6 meters in height. They each lay 250 bricks, but josh finishes th
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!