The answer to your question is OPTION B
The given question is incomplete. The complete question is as follows.
In a nuclear physics experiment, a proton (mass
kg, charge +e =
C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed
m/s. The proton comes momentarily to rest at a distance
m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are
m apart?
Explanation:
The given data is as follows.
Mass of proton =
kg
Charge of proton = 
Speed of proton = 
Distance traveled = 
We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.
=

where, 
U = 
Putting the given values into the above formula as follows.
U = 
= 
= 
Therefore, we can conclude that the electric potential energy of the proton and nucleus is
.
Perpendicular means at 90 degree angle. so,
<span>Perpendicular parking spaces require turning at a 90 degree angle.
When you are going to park perpendicularly, you need a distance of 7 to 8 feet from the vehicle you are parking next to, and when you are parking parallel, you need 5 feet distance from the vehicle you are parking next to.</span>
Answer:
Number 3
Explanation:
Unlike other numbers, this states that wind is "renewable". The choice 2 sounds a bit selfish, or not worded properly, I believe choice 3 is the answer. However, you are the judge of choosing to believe this or not.
Good luck!
Answer:
C 0.85 j/g*k
Explanation:
The specific heat capacity of a material is given by:

where
Q is the amount of heat supplied to the object
m is the mass of the object
is the increase in temperature of the object
For the object in this problem, we have
m = 117 g is the mass
Q = 1200 J is the heat supplied
is the increase in temperature
Substituting into the formula, we find the specific heat:
