1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RoseWind [281]
3 years ago
10

Which are the simplest pure substances that cannot be broken down into any other substances

Physics
1 answer:
Veseljchak [2.6K]3 years ago
6 0
The simplest pure substances that cannot be broken down into any other substances are elements, such as gold (Au) or oxygen (O).
You might be interested in
Returning once again to our table top example of a horizontal mass on a low-friction surface with m = 0.254 kg and k = 10.0 N/m
Julli [10]

Explanation:

Given that,

Mass = 0.254 kg

Spring constant [tex[\omega_{0}= 10.0\ N/m[/tex]

Force = 0.5 N

y = 0.628

We need to calculate the A and d

Using formula of A and d

A=\dfrac{\dfrac{F_{0}}{m}}{\sqrt{(\omega_{0}^2-\omega^{2})^2+y^2\omega^2}}.....(I)

tan d=\dfrac{y\omega}{(\omega^2-\omega^2)}....(II)

Put the value of \omega=0.628\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-0.628)^2+0.628^2\times0.628^2}}

A=0.0198

From equation (II)

tan d=\dfrac{0.628\times0.628}{((10.0^2-0.628)^2)}

d=0.0023

Put the value of \omega=3.14\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-3.14)^2+0.628^2\times3.14^2}}

A=0.0203

From equation (II)

tan d=\dfrac{0.628\times3.14}{((10.0^2-3.14)^2)}

d=0.0120

Put the value of \omega=6.28\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-6.28)^2+0.628^2\times6.28^2}}

A=0.0209

From equation (II)

tan d=\dfrac{0.628\times6.28}{((10.0^2-6.28)^2)}

d=0.0257

Put the value of \omega=9.42\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-9.42)^2+0.628^2\times9.42^2}}

A=0.0217

From equation (II)

tan d=\dfrac{0.628\times9.42}{((10.0^2-9.42)^2)}

d=0.0413

Hence, This is the required solution.

5 0
3 years ago
Explain the relationship between the current output of the power supply and the current through each component in the parallel c
baherus [9]

Explanation:

Current output at the battery will be current of entire circuit, while the current through each bulb in the parallel circuit is the total current circuit.

So, current output through power supply is i and current through each component be i_1, i_2 , i_3 considering only three component.

Then in a parallel circuit

i = i_1+i_2+i_3

4 0
3 years ago
What motivates the squire in lines 85- 90?
just olya [345]
<span>Answer: If you mean the Knight in the prologue, the man traveling with his son (the Squire) and a Yeoman, he is traveling to Canterbury to give thanks for his safe return from the wars in the Baltic. We're told that he has never been known to speak unkindly to anyone, a fact that sums up his chivalrous upbringing. Evidently he feels strongly motivated to live by a code of high standards and refined behavior.</span>
5 0
3 years ago
A bird lands on a bare copper wire carrying a current of 51
nirvana33 [79]
The resistance of the piece of wire is
R= \frac{\rho L}{A}
where
\rho = 1.68 \cdot 10^{-8}\Omega m is the resistivity of the copper
L=5.1 cm=0.051 m is the length of the piece of wire
A=0.13 cm^2 = 0.13 \cdot 10^{-4} m^2 is the cross sectional area of the wire
By substituting these values, we find the value of R:
R= \frac{\rho L}{A}=6.6 \cdot 10^{-5} \Omega

Then, by using Ohm's law, we find the potential difference between the two points of the wire:
V=IR=(51 A)(6.6 \cdot 10^{-5} \Omega )=3.4 \cdot 10^{-3} V
7 0
3 years ago
If the 250 kg bumper car that you are riding in hits another bumper car that is sitting still while driving 3.5 m/s, how much fo
Vilka [71]

Answer:

875 N

Explanation:

From this question, you didn't state the time taken for the bumper car to move or to hit the other bumper car. In calculations of force, time is often needed, because

Force = mass * acceleration, while

Acceleration = velocity / time, basically

Force = mass * velocity / time.

We have our mass, we have our velocity, but we haven't time. So, for this calculation, I'd assume our time to be 1s.

Going by the formula I stated, we can then say that

Force = 250 * 3.5 / 1

Force = 875 N

This means the force my bumper car have while moving at 3.5 m/s for an estimated time of 1s is 875 N

3 0
3 years ago
Other questions:
  • An electromagnetic flowmeter is useful when it is desirable not to interrupt the system in which the fluid is flowing (e.g. for
    13·1 answer
  • Astronomers have discovered a planetary system orbiting a star, which is at a distance of 3.9 × 1014 m from the earth. One plane
    6·1 answer
  • When Lisa placed a balloon to her ear, she was able to hear what her sister was whispering from the other side of the room. When
    6·2 answers
  • The four wheels of a car are connected to the car's body by spring assemblies that let the wheels move up and down over bumps an
    15·1 answer
  • Please help ASAP...A satellite takes 24 hours to complete one orbit whilst travelling at a speed of 12 km/s. at what height abov
    15·1 answer
  • 2. An object goes from a speed of 9 m/s to a total stop (Om/s) in 3 s. What
    13·1 answer
  • What is a solenoid
    6·2 answers
  • A psychologist is interested in exploring the effect tutorial support on students academic performance and assign students in to
    5·1 answer
  • In 1993, Wayne Brian threw a spear at a record distance of 201.24 m. (This is not an official sports record because a special de
    13·1 answer
  • Human diversity means similarities among people. It's each of us in our rich and infinite indistinguishable features. True of fa
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!