1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
3 years ago
10

An object is moving along a straight line, and the uncertainty in its position is 1.90 m.

Physics
1 answer:
just olya [345]3 years ago
6 0

Answer:

2.78\times 10^{-35}\ \text{kg m/s}

6.178\times 10^{-34}\ \text{m/s}

0.31\times 10^{-4}\ \text{m/s}

Explanation:

\Delta x = Uncertainty in position = 1.9 m

\Delta p = Uncertainty in momentum

h = Planck's constant = 6.626\times 10^{-34}\ \text{Js}

m = Mass of object

From Heisenberg's uncertainty principle we know

\Delta x\Delta p\geq \dfrac{h}{4\pi}\\\Rightarrow \Delta p\geq \dfrac{h}{4\pi\Delta x}\\\Rightarrow \Delta p\geq \dfrac{6.626\times 10^{-34}}{4\pi\times 1.9}\\\Rightarrow \Delta p\geq 2.78\times 10^{-35}\ \text{kg m/s}

The minimum uncertainty in the momentum of the object is 2.78\times 10^{-35}\ \text{kg m/s}

Golf ball minimum uncertainty in the momentum of the object

m=0.045\ \text{kg}

Uncertainty in velocity is given by

\Delta p\geq m\Delta v\geq 2.78\times 10^{-35}\\\Rightarrow \Delta v\geq \dfrac{2.78\times 10^{-35}}{m}\\\Rightarrow \Delta v\geq \dfrac{2.78\times 10^{-35}}{0.045}\\\Rightarrow \Delta v\geq 6.178\times 10^{-34}\ \text{m/s}

The minimum uncertainty in the object's velocity is 6.178\times 10^{-34}\ \text{m/s}

Electron

m=9.11\times 10^{-31}\ \text{kg}

\Delta v\geq \dfrac{\Delta p}{m}\\\Rightarrow \Delta v\geq \dfrac{2.78\times 10^{-35}}{9.11\times 10^{-31}}\\\Rightarrow \Delta v\geq 0.31\times 10^{-4}\ \text{m/s}

The minimum uncertainty in the object's velocity is 0.31\times 10^{-4}\ \text{m/s}.

You might be interested in
an object traveling 200 feet per second slows to 50 feet per second in 5 seconds. Calculate the acceleration of the object
emmainna [20.7K]

Answer:

The acceleration of the object is -30\ m/s^2

Explanation:

Given:

Initial velocity of object v_i = 200 feet/second

Final velocity of object v_f = 50 feet/second

Time of travel = 5 seconds

To calculate acceleration of the object we will find the rate of change of velocity with respect to time.

So, acceleration a is given by:

a=\frac{v_f-v_i}{t}

where v_f represents final velocity, v_i represents initial velocity and t is time of travel.

Plugging in values to evaluate acceleration.

a=\frac{50-200}{5}

a=\frac{-150}{5}

a=-30\ m/s^2

The acceleration of the object is -30\ m/s^2 (Answer). The negative sign shows the object is slowing down.

4 0
4 years ago
A wave with a frequency of 14 Hz has a wavelength of 7m. At what speed will this wave travel?
frutty [35]

Answer: A wave with a frequency of 14 Hz has a wavelength of 3 meters. At what speed will this wave travel? 1. = 3m (4. = 42m. 2. ... 1,7m (46) = 7802 m. 4. A wave traveling at 230 m/sec has a wavelength of 2.1 meters. What is the frequency of.

Explanation: please give me brainlest

8 0
3 years ago
Question 1 of 20
ad-work [718]

Answer

D. move a small magnet back and forth within a section of the coiled wire.

Explanation:

i put that for the test and i got it right

8 0
3 years ago
Read 2 more answers
A bus leaves at 9 am with a group of tourists. They travel 350 km before they stop for lunch. Then they travel an additional 250
Anettt [7]

Average speed = Distance traveled / time taken

In this case Time taken = Difference in hours between 3 PM and 9 AM

                                        = 6 hours

Total distance traveled = 350 km + 250 km

                                       = 600 kilometers

So average speed = 600/6 = 100 km/hr

Average speed of bus = 27.78 m/s

So the bus's average speed = 27.78 m/s or 100 km/hr.

8 0
3 years ago
The launch velocity of a toy car launcher is determined to be 5 m/s. If the car is to be launched from a height of 0.5 m, where
lora16 [44]

Answer:

1.6 m

Explanation:

Given that the launch velocity of a toy car launcher is determined to be 5 m/s. If the car is to be launched from a height of 0.5 m.

The time for landing should be calculated by using the second equation of motion formula

h = Ut + 1/2gt^2

Let U = 0

0.5 = 1/2 × 9.8 × t^2

0.5 = 4.9t^2

t^2 = 0.5 / 4.9

t^2 = 0.102

t = 0.32 s

The target should be placed so that the toy car lands on it at:

Distance = 5 × 0.32

distance = 1.597 m

Distance = 1.6 m

Therefore, the target should be placed so that the toy car lands on it 1.6 metres away.

7 0
3 years ago
Other questions:
  • A 98-kg fullback is running along at 8.6 m / s when a 76-kg defensive back running in the same direction at 9.8 m / s jumps on h
    5·1 answer
  • Blank objects is a major cause of back injuries in the workplace
    11·1 answer
  • What is the impulse
    13·1 answer
  • An electromagnetic wave is traveling through free space. The amplitudes of the wave's electric and magnetic fields are E 0 E0 an
    8·2 answers
  • An object's motion changes A. only if the object is at rest when a force acts upon it. B. only when a nonzero net force is appli
    6·1 answer
  • A train moves 80 km/hr and travels for 3.5 hr. How far did it go?
    8·1 answer
  • An 800 kg car is parked next to a 1000 kg car. Their centers of mass are 3.5 m apart. Find the gravitational force between them.
    6·1 answer
  • If Manuel exerts a force of 10 N to push a desk to the right at the same time Lynn exerts a force of 15 N to push the desk to th
    5·1 answer
  • A rollercoaster accelerates from 10 m/s to 100 m/s2 for 25 seconds. What is the acceleration?
    8·1 answer
  • A graduated cylinder has 50ml of water in it before A marble is dropped in after the marble is dropped into the graduated cylind
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!