Answer:
B. The temperature of the water when the food sample has finished burning completely.
Explanation:
Heat or thermal energy is a form of energy that transfers from one object to another due to a temperature difference between the objects. The units for heat are joules or calories.
Calorimetry is the measurement of heat energy released or absorbed in a chemical reaction. A calorimeter is used in calorimetry. The calorimeter operates on the Law of Conservation of Energy which states that energy is never created or destroyed but is transformed from one form to another or between objects.
In food calorimetry, the energy released when food is burned is measured by recording the rise in temperature of water in a calorimeter when a given mass of a food sample is burned completely.
Energy can be calculated using the formula: Q = mc ∆T
where Q = the energy in joules or calories, m = the mass in grams, c = specific heat and ∆T = the change in temperature (final temperature - initial temperature).
The temperature of the water when the food sample has finished burning completely is taken as the final temperature of the water. The sample is allowed to smolder for sometime before recording the final water temperature. This is because the water temperature will continue to rise after the flame has gone out.
Answer:
<em> = 0.2 mL.</em>
Explanation:
Given a 0.5 M solution of NaOH as stock solution, 10.0mL of 0.010M can be prepared via dilution with distilled water, by using the formula:
where C1 and V1 are initial concentration and volume respectively; same as C2 & V2 for fina.
Let C1 = 0.5M, V2 = ?
C2 = 0.010M; V2 = 10mL
⇒Volume of stock solution to be diluted, V2
=
× 0.010
<em> = 0.2 mL.</em>
Glasswares used would be pipette (for smaller volume experiment) and measuring cylinder. 0.2mL would be measured and then made upto the 10mL mark of the measuring cylinder.
I hope this was a detailed explanation given the missing details of "Trial 1" in the question.
<h3><u>Answer;</u></h3>
Molarity = 0.25 M
<h3><u>Explanation;</u></h3>
Molarity is given by moles/Liter.
First we find moles:
Number of moles = Mass /molar mass
= (10.7g NH4Cl)/(53.5g/mol NH4Cl)
= 0.200 moles NH4Cl
Then we convert to liters:
= (800mL)*(1L/1000mL) = 0.800L
Therefore; molarity = 0.2moles/0.8L
= 0.25M
Answer:
Noble gases are a unique set of elements in the periodic table because they don't naturally bond with other elements.
Explanation:
HAVE A GOOD DAY!
I hope this would be able to help u
dont forget the symbol its +2