slight reflect but most goes through because glass is transparent
Answer:
The magnitude of the magnetic torque on the loop when the plane of its area is perpendicular to the magnetic field is 0.4713 J
Explanation:
Given;
radius of the circular loop of wire = 0.5 m
current in circular loop of wire = 2 A
strength of magnetic field in the wire = 0.3 T
τ = μ x Bsinθ
where;
τ is the magnitude of the magnetic torque
μ is the dipole moment of the magnetic field
θ is the inclination angle, for a plane area perpendicular to the magnetic field, θ = 90
μ = IA
where;
I is current in circular loop of wire
A is area of the circular loop = πr² = π(0.5)² = 0.7855 m²
μ = 2 x 0.7885 = 1.571 A.m²
τ = μ x Bsinθ = 1.571 x 0.3 sin(90)
τ = 0.4713 J
Therefore, the magnitude of the magnetic torque on the loop when the plane of its area is perpendicular to the magnetic field is 0.4713 J
Force = change in momentum / time, Force in opposite direction so negative
-1.41 x 10⁶ = (p₂ - 3.87 x 10⁷) / 9.55
p₂ = 2.52 x 10⁷ Ns
Answer:
This is because the rubbing releases negative charges, called electrons, which can build up on one object to produce a static charge. For example, when you shuffle your feet across a carpet, electrons can transfer onto you, building up a static charge on your skin.
Explanation:
This is because the rubbing releases negative charges