1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex_Xolod [135]
3 years ago
14

3. Which of the following statements is false?

Engineering
1 answer:
MrRa [10]3 years ago
7 0

Answer: c.An accumulator is not used in a system with a receiver/dryer

Explanation:

In a refrigeration system, a condenser is used to transfer heat and this occurs from the refrigerant to the air or water.

Then, the refrigerant then condenses to liquid when the hear has been transferred.

We should note that the condenser is normally mounted in front of the radiator. The receiver/dryer is a storage tank for the liquid refrigerant from the condenser.

The statement that an accumulator is not used in a system with a receiver/dryer is not true. This is because, the accumulator gives protection to the compressor which helps to prevent the failure of the compressor.

Therefore, the answer is C.

You might be interested in
An industrial load with an operating voltage of 480/0° V is connected to the power system. The load absorbs 120 kW with a laggin
Leni [432]

Answer:

Q=41.33 KVAR\ \\at\\\ 480 Vrms

Explanation:

From the question we are told that:

Voltage V=480/0 \textdegree V

Power P=120kW

Initial Power factor p.f_1=0.77 lagging

Final Power factor p.f_2=0.9 lagging

Generally the equation for Reactive Power is mathematically given by

Q=P(tan \theta_2-tan \theta_1)

Since

p.f_1=0.77

cos \theta_1 =0.77

\theta_1=cos^{-1}0.77

\theta_1=39.65 \textdegree

And

p.f_2=0.9

cos \theta_2 =0.9

\theta_2=cos^{-1}0.9

\theta_2=25.84 \textdegree

Therefore

Q=P(tan 25.84 \textdegree-tan 39.65 \textdegree)

Q=120*10^3(tan 25.84 \textdegree-tan 39.65 \textdegree)

Q=-41.33VAR

Therefore

The size of the capacitor in vars that is necessary to raise the power factor to 0.9 lagging is

Q=41.33 KVAR\ \\at\\\ 480 Vrms

6 0
3 years ago
A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at -30C by rejecting
chubhunter [2.5K]

Answer:

a) x = 0.4795

b) QL = 5.85 KW

c) COP = 2.33

d) QL_max = 12.72 KW

Explanation:

Solution:-

- Assuming the steady state flow conditions for both fluids R-134a and water.

- The thermodynamic properties remain constant for respective independent intensive properties.

- We will first evaluate the state properties of the R-134a and water.

- Compressor Inlet, ( Saturated Vapor ) - Ideal R-134a vapor cycle

              P1 = 60 KPa, Tsat = -36.5°C  

              T1 = -34°C , h1 = hg = 230.03 KJ/kg

              Qin = 450 W - surrounding heat  

- Condenser Inlet, ( Super-heated R-134a vapor ):

              P2 = 1.2 MPa , Tsat = 46.32°C  

              T2 = 65°C   , h2 = 295.16 KJ/kg

- Condenser Outlet, ( Saturation R-134a point ):

             P3 = P2 = 1.2 MPa , Tsat = 46.32°C

             T3 = 42°C   , h3 = hf = 111.23 KJ/kg

- R-134a is throttled to the pressure of P4 = compressor pressure = P1 = 60 KPa by an "isenthalpic - constant enthalpy pressure reduction" expansion valve.

- Inlet of Evaporator - ( liquid-vapor state )

             P4 = P1 = 60 KPa, hf = 3.9 KJ/kg , hfg = 223.9 KJ/kg

             h4 = h3 = 111.23 KJ/kg

- The quality ( x ) of the liquid-vapor R-134a at evaporator inlet can be determined:

             x4 = ( h4 - hf ) / hfg

             x4 = ( 111.23 - 3.9 ) / 223.9

             x4 = 0.4795      Answer ( a )        

- Water stream at a flow rate flow ( mw ) = 0.25 kg/s is used to take away heat from the R-134a.

- Condenser Inlet, ( Saturated liquid water ):

             Ti = 18°C , h = hf = 75.47 KJ/kg  

- Condenser Outlet, ( Saturated liquid water ):

             To = 26°C , h = hf = 108.94 KJ/kg

- Since the heat of R-134a was exchanged with water in the condenser. The amount of heat added to water (Qh) is equal to amount of heat lost from refrigerant R-134a.

- Apply thermodynamic balance on the R-134a refrigerant in the condenser:

             Qh = flow (mr) * [ h2 - h3 ]

Where,

flow ( mr ) : The flow rate of R-134a gas in the refrigeration cycle

             flow ( mr ) = Qh / [ h2 - h3 ]

             flow ( mr ) = 8.3675 / [ 295.16 - 111.23 ]

             flow ( mr ) = 0.0455 kg/s

- The cooling load of the refrigeration cycle ( QL ) is determined from energy balance of the cycle net work input ( Compressor work input ) - "Win" and the amount of heat lost from R-134a in condenser ( Qh ).

- Apply the thermodynamic balance for the compressor:

           

            Win = flow ( mr )*[ h2 - h1 ] - Qin

            Win = 0.0455*[ 295.16 - 230.03] KW - 0.45 KW

            Win = 2.513 KW

- The cooling load ( QL ) for the refrigeration cycle can now be calculated. Apply thermodynamic balance for the refrigeration cycle:

            QL = Qh - Win

            QL = 8.3675 - 2.513

            QL= 5.85 KW  .... Refrigeration Load, Answer ( b )

- The COP of the refrigeration cycle is calculated as the ratio of useful work and total work input required:

           

             COP = QL / Win

             COP = 5.85 / 2.513

             COP =  2.33      Answer ( c )            

- For a compressor to be working at 100% efficiency or ideal then the maximum COP for the refrigeration cycle would be:

           

             COP_max = [ TL ] / [ Th - TL ]

Where,

            TL : The absolute temperature of heat sink, refrigerated space

            TH : The absolute temperature of heat source, water inlet

                 

            COP_max = [ -30+273 ] / [ (18+273) - (-30+273) ]          

            COP_max = 5.063

- The theoretical ideal refrigeration load ( QL max ) would be:

     

           COP_max = QL_max / Win

           QL_max = Win*COP_max

           QL_max = 2.513*5.063

           QL_max = 12.72 KW     Answer ( d )

5 0
4 years ago
For each of the cases below, determine if the heat engine satisfies the first law (energy equation) and if it violates the secon
stepan [7]

Answer:

From first law of thermodynamics(energy conservation)

Qa= Qr+W

Qa=Heat added to the engine

Qr=heat rejected from the engine

W=work output from the engine

Second law:

It is impossible to construct a heat engine that will deliver the work with out rejecting heat.

In other word ,if engine take heat then it will reject some amount heat and will deliver some amount of work.

1.

QH=6 kW,

QL=4 kW,

W=2 kW

6 KW= 4 + 2  KW

It satisfy the first law.

Here heat is also rejected from the engine that is why it satisfy second law.

2.

QH=6 kW, QL=0 kW, W=6 kW

This satisfy first law but does not satisfy second law because heat rejection is zero.

3.

QH=6 kW   ,   QL=2 kW,      W=5 kW

This does not satisfy first as well as second law.Because summation of heat rejection and work can not be greater than heat addition or we can say that energy is not conserve.

4.

QH=6 kW,   QL=6 kW,   W=0 kW

This satisfy first law only and does not satisfy second law.

6 0
3 years ago
An escalator in a shopping center is designed to move 50 people, 75 kg each, at a constant speed of 0.6 m/s at 450 slope. Determ
REY [17]

Answer:

Power required to drive the escalator shall be equal to the rate at which the energies of the persons is increased.

Energy=n\times mass\times g\times h\\\\\therefore Power=n\times mass\times g\times \frac{dh}{dt}\\\\Power=50\times 75\times 9.81\times 0.6sin(45)\\\\Power=15.607kW

As we infer from the above equation If the velocity of the escalator is doubled then the Power required will also be doubled and become 31.215kW

3 0
3 years ago
Who wants to play fortnite my name (JayIsABot13)
Blizzard [7]

Answer:

I'll play

Explanation:

I'm insane like so good at it

3 0
3 years ago
Read 2 more answers
Other questions:
  • A spacecraft starts in elliptical orbit JK (red solid curve) around some planet and transfers to elliptical orbit MN (blue solid
    7·1 answer
  • True/False
    6·1 answer
  • The hot-wire anemometer is an instrument used for measuring velocities or temperatures. If, during its calibration, the output s
    6·1 answer
  • Position from polar velocity A particle P starts at time t 0s at the position
    12·1 answer
  • Air at 80 °F is to flow through a 72 ft diameter pipe at an average velocity of 34 ft/s . What diameter pipe should be used to
    10·2 answers
  • Light created high energy holes pass through the external circuits. (a)-True(T) (b)- false(F)
    13·1 answer
  • Scenario: You and three of your friends decide to hike the Appalachian Trail, a 2175-mile trail running from Georgia to Maine, s
    11·1 answer
  • Find the mechanical average of a wheel axle System of the wheel has a radius of 1.5 feet in the accident has a radius of 6 inche
    6·1 answer
  • م
    12·1 answer
  • Describe how you would control employee exposure to excessive noise in a mining environment
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!